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Introduction
This manual provides an overview of the automatic code generation process 
using AutoCode®. With AutoCode you will soon be automatically generating 
robust, high-quality, real-time C or Ada source code from SystemBuild™ block 
diagrams.

1.1 Manual Organization

This guide provides the information you need to get started using AutoCode®. 
This guide is organized as follows.

■ Chapter 1 (this chapter) provides an overview of the rapid prototyping 
concept, the automatic code generation process, and the nature of the real-
time generated code. 

■ Chapter 2, Using AutoCode, explains how to generate real-time code by 
invoking AutoCode from SystemBuild™, Xmath®, or the operating system 
prompt. Generated code applications are also discussed.

■ Chapter 3, Using AutoCode with BetterState, details the management of the 
application control flow via the real-time scheduler. 

■ Chapter 4, Managing and Scheduling Applications, details the management 
of the application control flow via the real-time scheduler. Topics of 
discussion include scheduler operation sequence, subsystem properties, 
subsystem interruption, and examples of scheduler operation.
1
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■ Chapter 5, Code Generation for Discrete Systems, describes the scheduler 
architecture as it relates to discrete code generation. Topics include IPAR and 
LPAR.

■ Chapter 6, Code Generation for Continuous Systems, describes the scheduler 
architecture as it relates to continuous code generation. Topics include fixed-
step integrators, user-defined integrators, and how to generate code for 
continuous and hybrid systems.

■ Chapter 7, Using VxWorks with AutoCode, describes the VxWorks AutoCode 
C template package with MATRIXX

® 7.X and Tornado 2. 

■ Chapter 8, Customizing AutoCode and Generated Code, provides advanced 
methods for customizing AutoCode and its output real-time code using 
AutoCode configuration options, templates (see the Template Programming 
Language User’s Guide), BlockScript, and %variables.

■ Chapter 9, Introduction to Software Constructs with AutoCode, describes 
UserCode Blocks, Macro Procedure Blocks, and Procedure SuperBlocks.

■ Appendix A, AutoCode Options, describes options that can be used when 
invoking AutoCode from within the Xmath Commands window or from the OS 
prompt. This appendix also describes how to use an autostart.opt file.

■ Appendix B, Software Development Kit, describes the AutoCode Procedure 
Software Development Kit (ACP SDK). The SDK provides users of AutoCode 
generated code an Application Programming Interface (API) to generated 
Standard and Startup Procedure SuperBlock code.

■ Appendix C, Sample AutoCode Output, shows the generated AutoCode 
output from the IfThenElse example shown in Chapter 9.

This guide also has an Index.

For more advanced details and information necessary to customize both 
AutoCode and the generated real-time output code, see the Template Programming 
Language User’s Guide or the AutoCode Reference.

1.2 Rapid Prototyping Concept

Conventional real-time system development usually takes place in stages, with 
separate tools for control design, software engineering, data acquisition, and 
2



1

1
Introduction
testing. The MATRIXX Product Family integrates tools for each stage of system 
development into a single environment. This allows a design to move easily from 
one stage to the next, making it possible to create a working prototype early in the 
design process.

Within the MATRIXX SystemBuild and Xmath products, you can build, simulate, 
analyze, test, and debug a model. You can then use AutoCode to generate real-
time code in a high-level language (C or Ada) for the model. The generated 
application code can be evaluated on the host with SystemBuild simulation or run 
on the RealSim™ controller for hardware in-the-loop testing. The generated 
application code can be cross-compiled and linked for implementation on an 
embedded processor. You can also use DocumentIt™ to generate documentation. 

Figure 1-1 shows AutoCode in the MATRIXX product line.
3
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Figure 1-1 AutoCode in the MATRIX X Product Line
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1.3 Automatic Code Generation Process

As an integral part of the Wind River Rapid Prototyping concept, AutoCode lets 
you generate high-level language code from a SystemBuild block diagram model 
quickly and automatically. A typical sequence for using AutoCode is as follows 
(this sequence corresponds to the sequence shown in Figure 1-2, p.6): 

1. Build the Model and Validate Through Simulation

You can quickly develop the continuous-time plant model and corresponding 
discrete-time controller SuperBlocks using SystemBuild block diagrams. The 
SystemBuild model is built up from a large palette of blocks that combine to 
describe the way that the model works and how it should be controlled. You 
can then analyze and simulate the plant and controller in Xmath; if you find 
any errors, you can easily amend the model and simulate it again until you 
are satisfied with its performance. You can perform parametric studies in 
simulation and pass the values from the Xmath workspace into the generated 
code. 

2. Customize Code Generation

You can tailor your generated code using the template programming 
language (TPL), provided in AutoCode. This programming language lets you 
customize the code for a wide variety of specialized purposes. Run-time 
parameterization can be programmed into the generated program. Also, 
configuration information can be entered when the real-time code is 
generated.

3. Generate the Real-Time Code

You can invoke AutoCode from inside SystemBuild, from the Xmath
Commands window, or from the operating system command line. AutoCode 
processes discrete-time and continuous-time SuperBlocks to generate high-
level language code in C or Ada.

4. Compile and Link

You can customize the environment in which the generated code runs by 
editing standalone Input/Output utilities files included with AutoCode. 
Additionally, you can further enhance the functionality of your model by 
adding UserCode Blocks. Compile and link the generated code with these 
standalone files and any UserCode Blocks that you will be using to produce a 
standalone real-time application program for simulation on the host. Refer to 
2.5, p.25.
5
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5. Validate the Generated Code Through Simulation Comparison 

Now you can test and simulate the generated code on the host and feed the 
results back to Xmath for comparison with the SystemBuild simulation data. 
These steps are described in 2.5, p.25.

Figure 1-2 AutoCode Automatic Code Generation Process
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6. Test with Real or Prototyped Hardware

You can use a rapid prototyping tool such as RealSim to implement a real-
time controller, or to perform real-time hardware-in-the-loop testing with 
actual or emulated hardware. RealSim customers are provided with special 
templates and target-specific utilities to generate and link code specific to 
RealSim.

7. Implement the Finished Code on the Target

After you have completed all needed testing and simulation to optimize the 
functionality and performance of your application, the perfected code can be 
implemented on the target processor.

1.4 Using AutoCode with BetterState

The AutoCode code generation command includes a call to request BetterState to 
generate code for its statecharts. AutoCode does not generate code for BetterState 
charts directly. The BetterState code generator interfaces with BlockScript to 
produce the correct output language from the model. The generated code handles 
interfacing to AutoCode and simulation. This interface supports calling 
SystemBuild procedures and access to SystemBuild global variables.

The process for generating code for AutoCode and BetterState, from the 
AutoCode GUI or the simulator, is shown in Figure 1-3.
7
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The AutoCode-BetterState interface uses the AutoCode Software Development 
Kit (SDK) interface which is described in Appendix B.

The AutoCode-BetterState interface provides the following features:

■ Fixed-point libraries (standalone utilities and more source code files)

■ Variable step-size solver in AutoCode

■ Code Generation support for VxWorks

■ makefile generation with the acmake command

Figure 1-3 Generating Code for AutoCode and BetterState
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■ Name mangling feature (new flag for Code Generator; AutoCode changes 
names in the user’s model)

For more information about this interface, see Chapter 3, Using AutoCode with 
BetterState. For information about using VxWorks with AutoCode, see Chapter 7.

1.5 Profile of the Generated Program

If no user-originated changes are made to the template program, the generated 
application program consists of calls to a time-critical application manager/
scheduler, a re-entrant dispatcher, one or more pre-emptible subsystems, input/
output functions, a timer interrupt handler, and a background function (see 
Figure 1-4, p.10). The calls to the modules of the generated program are in the 
template program, which lets you modify the way the generated program is 
structured and expand it as needed. Under control of the default template file, the 
application program is assembled from components taken from a variety of files, 
with different provisions for user modification, as explained in the following:

■ Manager/Scheduler

The manager/scheduler is a time-critical routine that performs external 
input/output functions for the application program, takes care of various 
housekeeping tasks, and generates a dispatch list of the subsystems that are 
ready to be executed. 

Tailoring: This routine can be customized by modifying or rewriting the 
supplied real-time scheduler. Under control of the template file, any number 
or variety of scheduler programs can be used.
9
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■ Dispatcher

The dispatcher dispatches the subsystems that are ready to be executed from 
the dispatch list in a prioritized order. Highest priority subsystems get 
dispatched first.

Tailoring: Dispatcher logic can be customized by modifying the template file.

■ Subsystems

The subsystems contain the code implementing block algorithms generated 
from the SystemBuild model. They implement real-time activities by 

Figure 1-4 Components of the Generated Application Program
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accepting inputs and posting outputs at times derived from the sampling 
rates of the SuperBlocks in the SystemBuild model, under control of the 
manager/scheduler. 

Tailoring: Customization of block code is supported only via the BlockScript 
and UserCode blocks. The block code for other block types is proprietary. 
Refer to 8.4 BlockScript Block, p.140 for details regarding BlockScript.

■ I/O Routines

The main function of I/O routines is to provide input data to the AutoCode 
real-time application on every scheduler cycle and to obtain the computed 
outputs from it. The supplied I/O routines read inputs from a MATRIXX 
formatted ASCII file and write outputs to a file in the same format.

Tailoring: The input/output routines are part of the standalone utilities file 
and are intended to be user modified. Any variety of I/O routines can be 
user-written and invoked as needed under control of the template program.

■ Timer Interrupt Handler

The timer interrupt handler calls (or invokes) the manager/scheduler at a 
specified time interval. This is not needed for standalone simulation on a 
host.

Tailoring: This routine is intended to be user-defined, such that it invokes the 
scheduler on every minor cycle.

■ Background Function

The background function performs idle time non-time-critical tasks such as 
self-diagnosis or updating a display; its essential qualification is to be 
interruptible. For standalone simulation, it merely calls the scheduler for 
user-specified simulation cycles as specified by time vector.

Tailoring: This is part of the standalone utilities file that can be user-modified 
or completely rewritten.

For a detailed explanation of the flow of control in the generated program, see 
Chapter 4, Managing and Scheduling Applications.
11
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1.6 AutoCode-Generated Reusable Procedures

In the earlier sections of this chapter, we looked at the process of generating a real-
time scheduled application program and its nature. However, in some cases, you 
might not want to generate scheduler and related data structures. Rather, you 
might want to generate merely algorithmic procedures (subroutines). AutoCode 
provides an option to let you generate only algorithmic procedures from 
Procedure SuperBlocks, without the scheduler and its data structures.

Following are some uses of generating reusable algorithmic procedures:

■ Linking them to your own real-time scheduler (executive) or simulator

■ Linking them to the SystemBuild simulator for algorithmic verification and 
speeding simulation by using integer math in the procedure

The AutoCode generated procedures link to the SystemBuild simulator via a 
UserCode Block in the SystemBuild model. The procedure describing how to link 
them is provided in Chapters 2 and 3 of the AutoCode Reference.

1.7 Using MATRIX X Help

MATRIXX 7.X provides a hypertext markup language (HTML) help system. The 
MATRIXX Help system is a self-contained system with multiple hypertext links 
from one component to another. This help system, augmented by online manuals, 
covers most MATRIXX topics except for installation. For installation information, 
see your online or printed manuals.

The MATRIXX Help system requires Netscape Communicator 4.03 (included on 
the MATRIXX CD) or later. On UNIX systems, an OEM version of Navigator is 
automatically included in the MATRIXX installation. On PC systems, Netscape 
Communicator must be installed independently using the Netscape installation 
procedure included on the MATRIXX CD. 

Additional Netscape Information

For more information on Netscape products, see Netscape’s home page at 
www.netscape.com.
12
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1.8 Related Publications

Wind River provides a complete library of publications to support its products. In 
addition to this guide, publications that you may find particularly useful when 
using AutoCode include the following:

■ Xmath User’s Guide

■ SystemBuild User’s Guide

■ BetterState User’s Guide

■ BlockScript User’s Guide

■ RealSim User’s Guide

■ AutoCode Reference

■ Template Programming Language User’s Guide

■ DocumentIt User’s Guide

For additional documentation, see the MATRIXX Help or the Wind River home 
page at www.windriver.com.
13
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2

Using AutoCode
This chapter explains how to generate real-time code by invoking AutoCode from 
SystemBuild, the Xmath Commands window, or the operating system prompt. This 
chapter also discusses generated code applications.

2.1 How to Generate Real-Time Code

Using AutoCode, you can generate C or Ada high-level language code from:

SystemBuild — generates a real-time file (.rtf) and then source code from a model, 
after selecting it from the Catalog Browser. For ease of use, this is the 
recommended method of code generation.

Xmath —  generates an .rtf file and then source code from a model, using an Xmath 
command.

Operating system prompt —  generates source code from an already-existing .rtf file, 
using the autostar command from the operating system prompt.

For Xmath Commands window or operating system command options, see 
Appendix A, AutoCode Options.
15
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2.1.1 Generating Code from Within SystemBuild

To use AutoCode while inside SystemBuild, select a SuperBlock in the Catalog
Browser, and then select Tools→AutoCode to open the dialog. Instructions for using 
this dialog are in the MATRIXX Help.

Depending on the template file and command options used, the code generated 
can be either C code or Ada code.

2.1.2 Generating Code from Xmath

The autocode command lets you process a model to generate C or Ada code. Two 
syntax formats are supported:

autocode, {model = name1, file = name2, ...
language = name3, tpldac = name4, ...
rtf = name5, vars, typecheck}

autocode model, { options}

where name1 identifies the model to be processed for code generation. The model 
will be either: 

■ A string (in “quotes”). Must be the name of a SuperBlock that exists in the 
current SystemBuild catalog. This SuperBlock is analyzed and processed to 
generate code. 

■ A variable (not in quotes). Variables should be assigned to a string, the string 
must be the name of a SuperBlock in the current catalog; it is analyzed and 
processed to generate code. 

Whenever a file name or other string is included in a command string, it must be 
enclosed in quotes, but a variable name must not be in quotes.

Keywords for the second type of syntax are the same as for the first syntax, except 
model. See Appendix A for the Xmath command options.

Examples:

autocode " topSB"

The system generates a real-time file named topSB.rtf. It loads this file and 
processes it to produce C code. The output file name is topSB.c.

autocode " topSB", {tpldac="mytemplet",!vars}

autocode, {model = " topSB", tpldac = "mytemplet", !vars}
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Either syntax processes the SuperBlock topSB in the current catalog to produce C 
code, using the direct access template file MyTemplate and no Xmath %variables. 
The output file name is topSB.c.

2.1.3 Generating Code from the Operating System

If a model file already exists, it is also possible to execute AutoCode from the 
operating system prompt. The file intended for processing must be a real-time file 
(.rtf). At the operating system prompt, execute the command:

% autostar {options} model_file.rtf

Many of the options are the same as the fields in the Generate Real-Time Code 
dialog. See Appendix A for the operating system command options. 

AutoCode runs, creating a high-level language file. When the operating system 
prompt returns, the process is complete.

Examples: 

% autostar -h

shows a help display. 

% autostar -l c SysBld_file.rtf

processes the model file SysBld_file.rtf to produce a C code file named SysBld_file.c. 
All default settings are accepted. It assumes a direct access template file named 
c_sim.dac exists in your working directory.

% autostar -l a -t ada_rt.tpl -sd 6 -o CodeFile.a MyModel.rtf

processes the ASCII template file ada_rt.tpl and produces a direct access template 
file ada_rt.dac. The model file MyModel.rtf is then processed, producing Ada code 
in file CodeFile.a, which contains numeric literals encoded using a maximum of 6 
significant digits of precision.

% autostar -l c -t c_sim.tpl

compiles the template file c_sim.tpl to produce a .dac file named c_sim.dac. 
17



MATRIXX 7.0
AutoCode User’s Guide
2.1.4 Limitations/Restrictions

■ SystemBuild models processed by AutoCode cannot contain algebraic loops. 

■ AutoCode models cannot accept data that includes complex numbers. 

■ The input time vector must start at 0.0.

■ AutoCode does not support the following blocks:

● MathScript Block

● HDL CoSim Block

● Implicit UserCode Block

■ Macro and Inline Procedure SuperBlocks are not supported within 
Conditional SuperBlocks.

■ When AutoCode encounters a user input Interactive Animation icon, 
generated code assigns a constant value equal to the initial value of the icon.

■ Only block comments are inserted in the generated-for-display Interactive 
Animation icons.

■ AutoCode does not generate parameterized code for the following blocks 
even though parameters within these blocks can be parameterized using the 
%variable notation:

● State Space Block

● Num, Den Block

● Gain, Zeros, Poles Block

● Gain, Damps, Freqs Block

The AutoCode software lets you generate ANSI C or Ada code automatically 
from SystemBuild models. 

You can generate code from the Catalog Browser in SystemBuild or use the 
autocode Xmath command. The generated code represents a complete 
implementation of the model. The generated code can be targeted for and run on 
other computers or an actual controller. The default target is a standalone 
simulation that you can execute on your computer; you can then load the results 
of the simulation back into Xmath for analysis. 

NOTE:  Dynamic systems are transformed to optimize performance and the 
mapping between the Xmath value and the block variable is lost. Variable space is 
allocated and initialized but the values are hardcoded. 
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2.2 Generating Non-Customized Code

With Xmath running on your host, generate code for the sample Discrete Cruise 
System model by taking these steps:

1. Make sure you are in a directory where you want to save your code (and that 
you have write permission in that directory). If not, enter the following 
command from the Xmath Commands window:

set directory =" your_working_directory"

2. From the Xmath Commands window, type the following command to load the 
model:

load "$SYSBLD\demo\cruise_demo\cruise_d.cat";

3. From the SystemBuild - Catalog Browser, select the Discrete Cruise System 
SuperBlock.

4. From the Catalog Browser, select Tools→AutoCode to bring up the Generate
Real-Time Code dialog.

NOTE:  The Xmath Commands window is the only place that can recognize 
environment variables. For loading with other methods, you must know that full 
pathname of the SystemBuild directory. Xmath commands use $env_var; whereas, 
commands that go directly to the operating system, such as oscmd, use the 
operating system convention (for example, %env_var% for Windows).

NOTE:  You must generate code from a top level SuperBlock.
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or select a top level SuperBlock and enter Ctrl-G to display the dialog.

5. Enter a name in the File name field or accept the default, 
Discrete_Cruise_System.

6. In the Code Generation Options section, select:

a. Subsystems or Procedures in the Code Style field.

b. C, Ada, or RTF only as the Language.

c. %Vars from Xmath or Block Defaults in the Block Parameters field.

d. Or deselect Typecheck.

7. Click OK to start the code generation process.

8. Display the Xmath Commands window to monitor the progress of the code 
generation.

9. Once the code generation is complete, look for a statement similar to the 
following in the Xmath log area:

Output generated in d:\user\test\Discrete_Cruise_System.c.

Code generation complete.

10. (Optional) Display the output file in the Xmath output area by entering a type 
command similar to the following in the Xmath Commands window:

oscmd ("type d:\user\test\Discrete_Cruise_System.c")
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2.3 Generating Customized Code

To customize your AutoCode output, click Advanced on the Generate Real-Time
Code dialog; this brings up the Advanced dialog.

You can use the Advanced dialog or use keywords with the autocode Xmath 
command to customize the generated code as follows:

 Templates tab  — lets you control the formatting of the output of AutoCode to meet 
a variety of software needs; you can modify the overall architecture of 
generated code, customize the scheduler, modify data structures and external 
I/O calls, add user code, and so forth. Using the Template Programming 
Language (TPL), you can tailor any part of the code except the hierarchy logic 
and the elementary blocks. Numerous templates are available, including one 
to customize the generated code for the pSOSystem real-time operating 
system. For more information on templates, see the Template Programming 
Language User’s Guide.

Formatting tab  — lets you set the form of the generated code. You can specify 
settings for the maximum number of significant digits (default is 16), 
maximum length of variable names (default is 48), maximum number of 
columns per row (default is 80), and other formatting settings (as shown).
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IALG Options (Integration Algorithms) tab  — lets you select an integration algorithm 
such as Euler, Runge Kutta, Kutta-Merson, or a user-defined algorithm. This 
tab also lets you set a minimum scheduler frequency and a continuous 
subsystem sample interval.

Multi-Processor tab  — lets you specify a processor map, startup map, background 
map, interrupt map, skew map, priority map, or map file. You can also 
specify up to 10 processors and select shared memory callouts.

Optimization tab (shown in 2.3, p.21)  — lets you make general, vectorization, and 
VAR block settings that affect code size and efficiency (see the AutoCode 
Reference for details).

Miscellaneous tab (shown in Figure 2-1 )  — lets you select an options file, the type of 
scheduler, output scope control, and various other settings. For information 
about how to set epsilon, for example, see Appendix A, AutoCode Options.

RTOS (real-time operating system) tab  — lets you specify a configuration file and 
whether to generate extended procedure INFO data structures.

Once you have customized your settings, you click OK in the Advanced dialog; 
then you generate code by clicking OK in the Generate Real-Time Code dialog.
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For information about autocode keywords, see Appendix A, AutoCode Options 
and the MATRIXX Help.

2.4 Using Templates

The AutoCode software template feature enables you to create accurate software 
for your application. Unique to AutoCode, the Wind River templates give you 
control over comment density (adding or deleting comments), application of 
specific data structures or the initialization of variables. Templates are designed to 
produce language-specific code for real-time execution in a host environment. 

The provided templates can be used for starting points for tailoring generated 
code to suit specific embedded targets. You can specify the AutoCode template 
file from the Templates tab of the Advanced dialog (as shown in Figure 2-2).

Figure 2-1 Advanced Dialog, Miscellaneous Tab
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The template can be either a template file (.tpl) or a direct-access file (.dac).

2.5 Applications of AutoCode-Generated Code

In Section 2.1 you learned how to generate real-time code using AutoCode from 
SystemBuild, the Xmath Commands window, and the operating system prompt. 
These are applications of the AutoCode-generated code:

■ Standalone simulation on the host machine

■ Rapid Prototyping

■ Real-time simulation

■ Embedded real-time control

Figure 2-2 Advanced Dialog, Templates Tab
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2.5.1 Standalone Simulation

AutoCode lets you execute code from a standalone UNIX or Windows system; 
use the same input vectors for SystemBuild simulation; test the generated 
application with these vectors; and load the output vectors back to Xmath for 
comparison and analysis.

When a system has been modeled in SystemBuild and its source code has been 
generated using AutoCode, you can compare the outputs from the generated 
code against those obtained from simulating the block diagram. The Standalone 
Library, provided in your src distribution directory, supports this function. 

The Standalone Library is a collection of subroutines that performs the operations 
of the target-specific utilities to allow testing of the generated code in a traditional 
non-real-time host or PC environment. The Standalone Library provides  services 
such as reading in an input data file and producing an output file.

The role of the Standalone Library in testing the generated application code 
against the simulations is illustrated in Figure 2-3, p.27.

NOTE:  Use the csi option so generated code will match sim results for continuous 
systems.
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Figure 2-3 Compiling, Linking, and Running the Generated Program
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Standalone Simulation

The steps required to test the generated code from an OS prompt are:

1. Depending upon your platform, do either of the following:

a. On a Windows system, make sure that the environment variables are set 
up according to the Microsoft Visual C++ Getting Started manual. On a 
Windows 98 or Windows 95 system, use the Set envvar = command in the 
autoexec.bat file. On a Windows NT or Windows 2000 system, select the 
Environment tab of System Properties in Start→Settings→Control Panel.

The path should have: C:\MSDEV\BIN.

The include should have: 
C:\MSDEV\INCLUDE;C:\MSDEV\MFC\INCLUDE.

The lib should have: C:\MSDEV\LIB;C:\MSDEV\MFC\LIB.

b. On a UNIX system, make sure the path to your compiler includes your 
path environment variable. If not, enter the which cc command to display 
your compiler path. If necessary, add the compiler path to you path 
environment variable by entering:

setenv PATH ${ path}: compiler_path

2. Generate code from the SystemBuild - Catalog Browser.

3. Run the acmake command to generate a makefile that automatically rebuilds 
all out-of-date objects and then relinks the executable. You can use the acmake 
command to complete an incremental build (Ada only) or a full build. For 
example:

You can use the clean option to remove all build objects from a directory:

acmake update -f model.mak Incremental build for Ada only (the C makefile 
automatically determines whether to do an 
incremental or full build)

acmake -f model.mak Full build for Windows

acmake -f model.mk Full build for UNIX

acmake clean -f model.mak Deletes all build generated files from the 
directory
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4. Create an input file, file.in, containing (column) vectors t (time) and u 
(inputs), in MATRIXX ASCII format, using Xmath as follows:

t = [0: ...]’;
u = [ ... ];
save t u file = "file.in" {matrixx, ascii};

Time vector t should always start with the first element value as zero. t and u 
vectors should have the same number of rows.

5. Run your executable from the OS prompt and specify the MATRIXX ASCII 
file name as file.in and the output file name as file.out, as shown below.

% executable
Enter xmath  {matrixx,ascii} formatted input filename: file.in
Enter output filename: file.out

6. Load the output from the generated code file.out back into Xmath and 
compare it to the simulation. (See 2.5.2, p.29 for the simulation options. Use 
the [te,ye] extended-time simulation feature to obtain all the discrete time 
points.) The file contains two items, the output matrix yrt and the time vector 
ytime. The generated code and simulation results should match very closely. 
For more details on each subroutine in the Standalone Library, refer to the 
comments in the source file.

After you have completed all needed testing and simulation to optimize the 
functionality and performance of your application, the perfected code can be 
implemented onto the target processor.

2.5.2 Simulation Options

For best results when using the Standalone Library to compare the generated 
code with simulation results, you first need to set up the simulator to imitate the 
generated code’s real-time behavior. This is done through simulator options. 

The appropriate Xmath command is:

setsbdefault,{actiming,extend,typecheck}

The SystemBuild simulator provides the actiming keyword in order to match 
AutoCode results for discrete systems. The simulator accomplishes this by 
matching AutoCode’s scheduler cycle, system initialization, and execution and 
posting times for each subsystem.

Three simulation keyword values are forced so that the initialization and posting 
of outputs match AutoCode.
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This command can be included in your set-up file. It is a good idea to use these 
options whenever your discrete controller model is intended for eventual 
implementation on a digital computer. Analyze your top-level SuperBlock from 
the SystemBuild menu. For more information, see the MATRIXX Help or the 
SystemBuild User’s Guide.

Assuming that you have executed the setsbdefaults statement shown above, you 
can execute the simulation with the command:

[te,ye] = sim(model,t,u,{sim keywords});

where:

model is a text string enclosed in double quotes, which is the name of the top-level 
SuperBlock in the SuperBlock Editor.

t is the required time vector.

u is an input data matrix.

2.5.3 Rapid Prototyping

AutoCode provides the means for fast implementation of SystemBuild block 
diagrams without lengthy manual coding. You can speed up design iterations by 
simply editing the block diagrams and generating new code. For more 
information on rapid prototyping, see the RealSim User’s Guide.

cdelay = 1 The output posting is always delayed one minor 
cycle.

initmode = 0 This keyword setting disables the initialization that 
is normally performed at simulation time. 0 = 
Outputs of continuous subsystems only are 
computed based on initial conditions and inputs. 
Outputs of discrete subsystems are set to .

dtout = 0 No extra output time points are specified. This 
keyword forces the outputs of the simulation to be 
posted only at the minor cycle of the simulation 
scheduler, which is defined by the least common 
multiple of the sampling intervals and timing 
requirements of the subsystems.

ε
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2.5.4 Real-Time Simulation

AutoCode lets you create and execute code and perform hardware-in-the-loop 
simulations for an entire system using RealSim. For details regarding real-time 
simulation, see the RealSim User’s Guide.

2.5.5 Implement Embedded Real-Time Control

AutoCode lets you generate code for real-time controllers. You can cross-compile, 
link, and download onto a wide variety of target processors.

2.6 How to Integrate Generated Code into Your Target

This section describes how to integrate automatically generated code into your 
target-specific application. As shown in Figure 2-4 the development process is 
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complex and iterative. AutoCode can be used to shorten the coding time and to 
advance more rapidly into the integration, test, and final debugging stages.

2.6.1 Loading the Fixed-Point Demo

The fixed-point demo (fixed-point.dat) found in the sysbld\demo directory 
addresses the following system requirements:

■ Design a 5th order filter using fixed-point arithmetic.

■ Target the filter for a Motorola 68K board (fixed-point) or simulator

■ Minimize code size (limited ROM/RAM)

Figure 2-4 Overview of Development Process Using Generated Code

NOTE:  Development templates can be user-defined for each application or target.
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The fixed-point demo model illustrates how users can analyze and compare fixed 
versus floating point behavior when all or part of the system is modeled with 
fixed-point arithmetic. Fixed-point arithmetic is commonly used in high-volume 
applications to approximate floating-point arithmetic on an integer only 
microprocessor. SystemBuild provides an extensive set of intrinsic fixed-point 
data types and analysis tools for fixed-point simulation as described in the 
SystemBuild User’s Guide. This implementation allows fixed-point simulation to be 
easily toggled on and off to facilitate comparison with floating-point behavior. 
The analysis tools help you identify quantization effects and select fixed-point 
scale factors.

This model includes a filter implemented using fixed-point arithmetic: all 
numerical calculations are performed with real numbers represented by an 
unsigned short (16 bits) data type. The radix is the number of bits used to 
represent the fractional part of a fixed-point number. By increasing the radix, you 
increase the resolution, but you also decrease the range of the numbers that can be 
represented. Adjusting the radix of a fixed-point number to allow the appropriate 
range and resolution is called scaling. For example, an unsigned byte (8 bits) with 
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a radix 2 can take on a minimum value of 9, a maximum value of only 31.875, but 
has a resolution of 0.125. 

2.6.2 Determining System Scaling

You can use the Minmax Display tool to help you track down fixed-point 
problems. This tool allows you to examine all output minimum values, maximum 
values, and the times they were achieved. The tool also tracks any fixed-point 
overflow that occurs during a simulation. To see the results of a simulation, enter 
minmax_display from the Xmath Commands window and click Load from the Load
Dataset dialog. Once you have your minmax display from any simulation, you can 
select any SuperBlock and any block within a SuperBlock and view DataType, Max 
Value, Max Time, Min Value, and Min Time.

You can also use the Minmax Display tool to monitor dynamic ranges of signals. 
For fixed-point signals, overflow and underflow of fixed-point simulations are 
detected and tracked, along with the time at which the events occurred. You can 
navigate directly to the block where an overflow occurred. You can then use this 
information to determine the proper scaling for the system. For example:

1. From the Xmath Commands window, define time variable t as follows:

t=[0:0.1:100]’;
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2. From the SuperBlock Editor window, select Tools→Simulate and enter a Timv 
Vector/Variable, an Output Variable, and a MinMax Variable in the 
SystemBuild Simulation Parameters dialog as shown and click OK:

3. From the Xmath Commands window, launch the Minmax Display tool with the 
following command:

minmax_display
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4. To view a MinMax Variable dataset, select Special→Load and the Minmax Load
Window appears.
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5. Select a dataset (for example, mmv for the MinMax Variable) and Click Load. 
The Minmax Display window appears with analysis data for the fixed-point 
demo.

2.6.3 Modular Programming

The fixed-point demo consists of a sine wave signal generator with a magnitude 
between -50 and 50, an algebraic expression that offsets the sine wave by 100 so 
that its magnitude is between 50 and 150, a signal converter to change from type 
float to type unsigned byte, and a filter. The filter is implemented with fixed-point 
arithmetic. Notice that the “single filter” SuperBlock is implemented as a 
Procedure Class of Standard.

Demonstrating the re-use of blocks, the “single filter” SuperBlock is built once, 
but reused 5 times in the “boost filter” SuperBlock.
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When the same SuperBlock is implemented over-and-over within a model, one 
should consider using a Procedure SuperBlock. In generated code, a procedure is 
comparable to a software function; that is, it is called by another program and 
data is passed via arguments. Thus, the application’s overall code size can be 
reduced. The use of procedures assists in meeting any requirements for code size 
minimization.

In Example 2-1, all elements of the “single filter” SuperBlock use a user-defined 
type called filrad. filrad is a fixed-point data type: an unsigned short with radix 7 
(US7). Simulating the model twice, first using floating-point arithmetic and then 
using fixed-point arithmetic, the results shown in Figure 2-5 are observed.

Example 2-1 Floating-Point Versus Fixed-Point Using Radix 7

t=[0:0:.015:10]’;
modifyUserType "filrad",{radix=7}
yflt=sim("FixedPointDemo",t);
yfix=sim("FixedPointDemo",t,{fixpt=1});
plot(t,[yflt,yfix],{xlab="Time(seconds)",ylab="y",title="Filter
Response:Radix=7",rows=2,
row=1,legend=["Floating Point","Fixed Point"]})?
plt_radix7=plot(t,[yflt-yfix],
{xlab="Time(seconds)",ylab="y_float-y_fixed",title="Fixed Point
Error",line_color="blue",rows=2,row=2,keep})?
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Example 2-2 Floating-Point Versus Fixed-Point Using Radix 8

t=[0:0:.015:10]’;
modifyUserType "filrad",{radix=8}
yflt=sim("FixedPointDemo",t);
yfix=sim("FixedPointDemo",t,{fixpt=1});
plot(t,[yflt,yfix],{xlab="Time(seconds)",ylab="y",title="Filter
Response:Radix=8",rows=2,
row=1,legend=["Floating Point","Fixed Point"]})?
plt_radix8=plot(t,[yflt-yfix],
{xlab="Time(seconds)",ylab="y_float-y_fixed",title="Fixed Point
Error",line_color="blue",rows=2,row=2,keep})?

Figure 2-5 Floating-Point Versus Fixed-Point Using Radix 7
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2.6.4 Comparing the Output

At first glance, the floating-point and fixed-point responses look very similar. The 
floating-point response is obscured by the fixed-point response because the 
response are so close. However, the plot of error shows that there is a small 
difference. When we change the radix of filrad to 8 (US8), this improves the 
resolution (0.00390625) of the fixed-point arithmetic but reduces the range (0 to 
255.9960938) of numbers that can be represented. Again, the model is simulated 
twice, once with floating-point arithmetic and once with fixed-point arithmetic.

Notice that there is now a very obvious saturation effect in the filter. There is a 
significant error between the floating-point and fixed-point responses caused by 
adjusting the radix of the fixed-point representation. 

Figure 2-6 Floating-Point Versus Fixed-Point Using Radix 8
40



2

2
Using AutoCode
2.6.5 Implementation

Typically the phase of development where code is generated (or written) is called 
the Implementation or Software Development phase. Before you generate code, 
you must set up target-specific utilities and templates for a particular application. 
The templates provide a model-independent way to tailor the generated code to a 
specific target. Any changes to a model translate directly to changes in the 
generated code but do not affect the template.

For example, we can use the c_sim.tpl template (excerpt shown in Example 2-3) 
from the case\Acc\templates folder to generate C code targeted for the Motorola 
68K board. The utilities file provides a means to accommodate input and output, 
which are specific to the target. The sa_utils.c file (excerpt shown in Example 2-4) 
from the case\Acc\src folder provides a means to accommodate input and 
output, which are specific to the target.

Example 2-3 c_sim.tpl Template File (Excerpt)

--
-- File : c_sim.tpl
-- Project : (C); AutoCode/C
-- Edit level :
--
-- Abstract:

This template is designed to produce both C executive code for
real-time execution in a host environment or modular procedures-only
code. This template can be used as a starting point for tailoring the
generated code to suit specific embedded targets. In particular,
changes would be required in the application scheduler code to
transform the scheduler into an interrupt task driven by a real-time
clock. Also supported is the ability to generate the code into either
a single file or multiple files.

*@

@INT i,j@ @/ Global variables, mainly used for loop counters.

@INC "c_core.tpl"@@
@INC "c_intgr.tpl"@@
@INC "c_sched.tpl"@@
@INC "c_async.tpl"@@
@INC "c_echart.tpl"@@
@INC "c_api.tpl"@@

@*

This main segment defines the control flow of code generation. It invokes
library tpl functions and other tpl functions defined below. User can
customize any of the segments defined in this template or implement new
segments (tpl functions) thereby controlling the output of the code
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generator.

*@

@SEGMENT MAIN()@@
@ASSERT STRCMP("C",language_s)@@
@ASSERT not multiprocessor_b@@
@IFF procs_only_b and nprocedures_i eq 0@@
@ FILEOPEN("stdout", "append")@@

** MODEL ERROR
**
** Cannot use 'procedures-only' option with a model
** that does not have any STANDARD PROCEDURES
**

@ FILECLOSE@

Example 2-4 sa_utils.c File (Excerpt)

** File : sa_utils.c
** Project : Autocode/C
**
** Abstract:
**
** Definitions for AutoCode files.
**
** The following routines provide a set of utility procedures
** that can be used with the code generated by AutoCode/C.
** These routines allow testing of the generated code in a host
** environment and provide a link with Xmath via MATRIXx ASCII formatted
** output files.
*/

#if (__STDC__ || defined(__cplusplus) || defined(c_plusplus))
#include <stdlib.h>
#include <string.h>
#else
extern int strcmp();
extern void exit();

#endif
#include <stdio.h>
#include <math.h>
#include "sa_sys.h"
#include "sa_defn.h"
#include "sa_types.h"
#include "sa_math.h"

#if (ANSI_PROTOTYPES)
static void fatalerr(RT_INTEGER errorCode);
#else
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static void fatalerr();
#endif

/* Storage allocation parameters.

* To change storage size limits, modify the following parameters.
* ------------------------------------------------------------------

* MAXU = max number of storage elements for input values in U
* MAXUTIM = max number of input time points in UTIME
* MAXY = max number of storage elements for output values in Y
* MAXYTIM = max number of output time points in YTIME */

#define MAXU 100000L
#define MAXUTIM 10000L

#if defined(OSF1)
#define MAXY 120000L
#define MAXYTIM 30000L
#else
#define MAXY 80000L
#define MAXYTIM 20000L
#endif

#define REQVER 700
#define REQVAR 2
#define DOUBLE_PRECISION TRUE

2.6.6 Optimizations

AutoCode offers many code optimization options as indicated on the 
Optimization tab from the Advanced dialog. These options are available in the 
form of “flags” that can be turned on and off. These flags can be set to achieve 
compiler-like optimizations, reduction of stack space, and/or object size, and 
improvement of runtime performance.

For many users, accepting the default settings is the best approach. For 
experienced MATRIXX users, a recommended approach is to experiment with 
existing models and regenerate code with different options selected. Once a 
model has been tested and meets performance expectations, optimization flags 
can be turned on and efficient production quality code can be generated. You can 
evaluate your optimization results against your particular application. 
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Beyond the target-specific utilities and templates lies consideration for interfacing 
with an existing scheduler. AutoCode provides its own scheduler that can be 
included in with the automatic generation of code, but it may become necessary 
to interface with an existing scheduler. With modifications to the template, the 
crystal frequency of the processor can be used as the timing base. The interrupt 
service routine (ISR) provides entry to the scheduler and incremental time ticks to 
the timer.

2.6.7 Integration and Test

An important part of the development process is to test iteratively. Once you have 
built part of your model, you can test the partially built model to observe 
performance or whether the model meets a particular requirement. One way to 
do this is to set up test points. You can establish a test point for any given block by 
setting a signal’s scope to global. This is done from the Output tab of the block 
dialog.
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Whether you select local or global scoping has no effect on simulation, but 
AutoCode sets up a software scope for the signal. During testing, you can easily 
access a global signal. Planning ahead for this test points can improve your 
integration and test procedures considerably.

2.7 How to Write Production Quality Code (Graphically)

This section describes the mechanics and the benefits of writing software 
graphically and then automatically generating code. The MATRIXX toolset has 
been designed for graphical software production. As illustrated in Figure 2-4, 
p.32, the software development process consists of requirements design, coding, 
and integration and test. The traditional method of hand-coding and hand-
correcting the code is not considered to be the most effective method in the days 
of “fast time to market.”
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2.7.1 Graphical Solutions

If requirements can be displayed graphically, then they can be used by system 
design and software design teams. Software engineers can then focus more on 
architecture on verification. In order to program graphically, certain design 
abstractions need to be understood and used. Basic or primitive blocks can be 
used to build more complex designs. Interconnections can be represented as 
connections between blocks. Data can be assigned to variables. 

Design Abstractions

The SystemBuild and AutoCode tools make use of the following design 
abstractions:

SuperBlock — This block is user-defined and can be periodic or a procedure. A 
Periodic SuperBlock lets you define the exact rate at which the block must run 
(either continuous or at a discrete rate). A Procedure SuperBlock takes on the 
timing attributes of its calling block (the block’s parent in the hierarchy).

Blocks — Or “building blocks” are the basis for defining algorithms. The 
SystemBuild environment has several types of blocks:

Predefined Blocks — Available from the Palette Browser provide a wide range 
of functionality: algebraic, dynamic, logical, interpolation tables, 
trigonometric, piece-wise linear, transformation, and signal generators

BlockScript Blocks — Provide general programming functionality via a 
scripting language. The BlockScript block must be interpreted, so usage 
does add some overhead to the model design.

UserCode Blocks — Link either C or FORTRAN subroutines to the SystemBuild 
environment.

BetterStateChart Blocks — Provide a link to BetterState statecharts. With the 
BetterState module, statecharts can be used within SystemBuild models. 
You can simulate your model with Sim, ISIM, and RealSim and generate 
code with AutoCode capabilities for BetterState statecharts. Statechart 
models can be used to generate C or Ada code, and interactive simulation 
enables the animation of BetterState diagrams.
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Custom Blocks — Provide users with the ability to customize any block and put 
it on the Palette Browser. Customization can be as simple as changing an 
icon or changing the associated Help, or it can be as complex as the 
design of a new block with Help, and icon and callbacks (from the 
predefined block, a UCB, or BlockScript).

Signals — Typically signify data flow and can be represented visually through 
interblock connections, or through variable reads and writes.

Code Abstractions

SystemBuild maps its design abstractions into code abstractions supported by 
AutoCode and BetterState. This includes the following code abstractions:

Functions and Packages — C functions and Ada packages are mapped into 
SuperBlocks. Software modules typically make use of functions and packages 
to represent algorithms or routines that are used multiple times and usually 
become part of a library. A SuperBlock can be used in the same way. It has 
lower level functions (blocks), has parameters, variables, and inputs and 
outputs. 

Code Segments — Blocks and local or global scoped variables (signals). Software 
code segments are graphically represented as SystemBuild blocks. Figure 2-7 
and Example 2-5 show a comparison of a simple procedure (graphical 
coding) and the corresponding generated code. This example implements the 
block representation of a gain and a summer block.
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2.7.2 Labels and Names

Label names should be given to all but the most trivial of signals. Labels 
significantly improve code readability and maintainability. 

SuperBlock inputs have two modes of assigning input names: specifying labels 
locally or inheriting higher level labels. Entering names for local inputs is always 
a good idea, even if you are doing top down design. Entering local names helps 
when the SuperBlock is reused in other applications or parts of the model, as 
these names appear in the connections editor, making it easier to make the correct 
connections.

In AutoCode, labels are the mechanism for controlling vectorization in code, so 
good labeling is very important.

A label appears within the diagram, while a name does not. As shown below the 
Input Labels of aaa and bbb defined in the SuperBlock Properties dialog appear in 
the diagram shown in Figure 2-7 and the input names of triple_a and triple_b 
appear in Example 2-5. The Input Name field is used only by AutoCode. For basic 
blocks, you have a choice of specifying a label and a name. AutoCode uses the 
name of a signal, if it exists, before using its label to create the variable used in the 
generated code.

Figure 2-7 Floating-Point Versus Fixed-Point Using Radix 8
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A common use for a name is when the variable in the generated code must be 
different than (or longer than) the label. Never use a name without a 
corresponding label (the name will not appear in the diagram). For most designs, 
there is no need to use a name.

2.7.3 Modular Programming Through Procedures

SuperBlocks provide a means for a variety of modular programming styles. The 
Procedure SuperBlock represents a generated software procedure, which is called 
as a standalone function. As in hand coding, the contents of a procedure represent 
a function. That function may contain calls to other functions, resulting in a 
hierarchy of procedures, each calling procedures below it. Similarly, the 
SystemBuild environment uses a hierarchy of SuperBlocks. Six types of Procedure 
SuperBlocks can be used to obtain the desired code results: Standard, Inline, 
Macro, Background, Interrupt, and Startup. For simulation and code generation, 
SuperBlocks are grouped into subsystems, by rate or by SuperBlock type (for 
example, Procedure or triggered). For example, all msec SuperBlocks comprise 
one subsystem, all Standard procedures comprise another system, and so forth.

Standard Procedures — Are reusable and re-entrant. They can be nested in any 
Discrete, Triggered, or Procedure SuperBlock.
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Inline Procedures — Generate inlined code which provides modular design and 
optimization at code generation time. Unlike other classes of Procedure 
SuperBlocks, an Inline Procedure is treated as part of the parent subsystem, 
not an individual subsystem. The primitive blocks nested within an Inline 
Procedure are merged into the subsystem of the parent SuperBlock. As a 
result, use of Inline Procedures can result in a different block execution order 
and can help eliminate potential algebraic loops. This also reduces AutoCode 
generated code size and procedure call overhead for nested Procedure 
SuperBlocks.

Macro Procedures — Allow the programmer to substitute a user-supplied macro 
statement in place of a call to a generated procedure. This allows you to 
directly call a special I/O or utility function from the generated code, but 
execute equivalent behavior modeled with SystemBuild blocks at Simulation 
time.

Background Procedures — Contain tasks that are performed when the system is 
otherwise idle.

Interrupt Procedures — Contain computations performed within an asynchronous 
Interrupt Service Routine (ISR) in a real-time environment.

Startup Procedures — Contain initialization calculations and assignments 
performed prior to the start of simulation or just after system hardware 
initialization in a real-time environment.

Example 2-5 Sample Generated Code from a Discrete SuperBlock Procedure

/******* Procedure: graphical_coding *******/
void graphical_coding( struct _graphical_coding_u *U

,struct _graphical_coding_y *Y
,struct _graphical_coding_info *I

)
{

RT_INTEGER *iinfo = &I->iinfo[0];
/***** Local Block Outputs. *****/

RT_FLOAT graphical_coding_1_1;

/***** Output Update. *****/
/* ---------------------------- Gain Block */
/* {graphical_coding..1} */
graphical_coding_1_1 = 5.0*U->triple_a;
/* ---------------------------- Summer */
/* {graphical_coding..2} */
Y->ccc = graphical_coding_1_1 - U->triple_b;
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iinfo[1] = 0;
EXEC_ERROR: return;
}

Note that variables, as in software, can be scoped locally to the procedure, or 
globally. A local scope signal is data represented as a stack variable, while a global 
scope signal is data represented by a global variable, with assigned memory 
address, if needed. In this example, the inputs aaa and bbb are locally scoped, 
while the output ccc is scoped as a global. In the code, since ccc is global, it is not 
required as an argument of the procedure.
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BetterState
This chapter explains how to use AutoCode with SystemBuild models that have 
BetterState charts. For more information about BetterState, see the 
“BetterStateChart Block” chapter in the SystemBuild User’s Guide, the BetterState 
User’s Guide, and the “BetterStateChart Block” topic in MATRIXX Help.

3.1 Procedural and Event-Driven BetterState Charts

AutoCode provides support for procedural BetterState charts and event-driven 
BetterState charts, but certain limitations and distinctions have to be considered:

■ A procedural BetterState chart is generated as a callout within the C or Ada 
procedure implementing the containing subsystem. The procedural 
BetterState chart can be in any subsystem type other than continuous.

■ For event-driven BetterState charts, each chart instance is generated as a 
unique subsystem, implemented by a C or Ada procedure. An event source 
must be a system external input. Wrappers are generated on a per-pin basis 
for each external input pin driving an event-driven chart’s trigger input. 

NOTE:  Event-driven BetterState charts can be in any SuperBlock type. 
53



MATRIXX 7.0
AutoCode User’s Guide
Figure 3-1 illustrates an example system with both an event-driven chart and a 
procedural chart.

3.2 Generating Code for a BetterStateChart Block

Generating code for the SystemBuild model CONTROLLER, as shown in 
Figure 3-1,  gives us the following:

■ The main subsystem containing block code for the integrator, signal path, 
limiter, and PROCEDURAL CHART (a callout).

■ The event-driven chart (EVENT CHART) subsystem, which is primarily a 
callout to functions inside a BetterState wrapper file.

Figure 3-1 Model with BetterState Event-Driven and Procedural Charts
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■ A hook paired with the external input driving the event-driven chart. 
(Invoking it calls the dependent event-driven chart.)

■ BetterState code conforming to AutoCode style implementing the charts (of 
both types).

■ The BetterState wrapper which lies, figuratively, between AutoCode and the 
BetterState code for the event chart.

Figure 3-2 shows this process graphically.

Example 3-1 shows the block code for PROCEDURAL CHART in the Main 
subsystem. Example 3-2 shows excerpts from the actual generated code for the 
EVENT CHART (event-driven chart) subsystem.

Example 3-1 Block Code for PROCEDURAL CHART in the Main Subsystem

/* BetterState Chart Block */
/* {PROCEDURAL_CHART.4} */
if( INIT ) {

CHRT_PROCEDURAL_CHART_BSInit(&PROCEDURAL_CHART_4_bs, U->event1_1,
&PROCEDURAL_CHART_1);

}
CHRT_PROCEDURAL_CHART(&PROCEDURAL_CHART_4_bs, U->event1_1,

&PROCEDURAL_CHART_1);

Figure 3-2 Code Generation for BetterState Event-Driven and Procedural Charts
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Example 3-2 Generated Code for EVENT CHART Subsystem

/******* Subsystem 1 *******/
void subsys_1(struct _Subsys_1_in *U, struct _Subsys_1_out *Y,

RT_INTEGER EVENT_ID) {
if (SUBSYS_PREINIT[1]) {

/* ---------------------------- BetterStateChart Block */
/* {EVENT_CHART.12} */

CHRT_EVENT_CHART_init_wrp(&EVENT_CHART_12_bs, TIME, U->event1_1,
&Y-> chart_out1, &Y->chart_out2);

return;
}
/***** Event Update *****/
if( EVENT_ID ) {

switch( EVENT_ID ) {
case 2 :
/* ---------------------------- BetterStateChart Block */
/* {EVENT_CHART.12} */
CHRT_EVENT_CHART_event_wrp(&EVENT_CHART_12_bs, EVENT_ID-1, TIME,

U->event1_1, &Y->chart_out1,
&Y->chart_out2);

break;
}

}
}

The generated code in this example creates two wrappers: one for the external 
input monitor (shown in Example 3-3) and one for the EVENT CHART subsystem 
(shown in Example 3-4).

Example 3-3 Wrapper Code for External Input Monitor for CONTROLLER

/*** Wrapper for External Input Monit 1 `CONTROLLER_1` ***/
void wrap_extin_monit_1() {

static RT_INTEGER reentering=FALSE;
if( reentering ) { Signal_An_Error(1); return; }
reentering = TRUE;
wrap_echart_subsys_1(2);
reentering = FALSE;

}

Example 3-4 Block Code for EVENT CHART Subsystem

/*** wrapper for EVENT CHART subsys_1 ***/
void wrap_echart_subsys_1( RT_INTEGER EVENT_ID ) {

RT_INTEGER status;
if( TASK_STATE[1] != BLOCKED ) { Signal_An_Error(1); return; }
TASK_STATE[1] = RUNNING;
Update_DS_With_Externals();
subsys_1_in.event1 = sys_extin.event1;
subsys_1_in.event1_1 = sys_extin.event1_2;
SUBSYS_TIME[1] = ELAPSED_TIME;
subsys_1(&subsys_1_in, ss1_outw, EVENT_ID);
if( ERROR_FLAG[1] == OK ) {
56



3

3
Using AutoCode with BetterState
Update_Outputs(1); TASK_STATE[1]=BLOCKED;
}
System_Extout_Copy();
if ( (status = External_Output ()) != OK ) { Signal_An_Error(1); return;}

}

3.2.1 Handling BetterState Charts That Call Procedures

If your BetterState chart (event-driven or procedural) calls one or more 
procedures, then the BetterState code must call AutoCode procedures. This is 
handled by generating a special wrapper known as the BSAPI or BESTAPI around 
each procedure called by a BetterState chart.

The API is scalar and of an agreed-upon form so that BetterState code can 
generate the proper calls. The BSAPI layer is generated automatically by 
AutoCode for each procedure marked by the Analyzer as needed by BetterState.

The BSAPI wrapper is similar but not identical to the SDK wrapper created in a 
previous release. For information about the SDK, see Appendix B.

3.2.2 Handling BetterState Charts That Read or Write Variable Blocks

If your BetterState chart (event-driven or procedural) reads or writes variable 
blocks, AutoCode uses API calls to identify the given WriteVariable or 
ReadVariable block. These API calls account for potential name mangling issues, 
since BetterState can only use the unmangled name. For additional information 
about variable blocks, see the SystemBuild User’s Guide or the MATRIXX Help.

This process leads to the creation of several interrelated files. For example, 
consider a model with two procedural charts and two AutoCode procedures 
(called from the chart code). Generating code for Ada produces the following 
files:

CHRT_best_chart1.a Chart code

CHRT_best_chart2.a Chart code

proc1_.a Procedure specification

proc1.a Procedure body

proc1_bsapi_.a BSAPI for procedure

proc2_.a Procedure specification

proc2.a Procedure body
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You can then use the acmake command to generate a makefile that automatically 
rebuilds all out-of-date objects and then relinks the executable. You can use the 
acmake command to complete an incremental build (Ada only) or a full build. For 
example:

You can use the clean option to remove all build objects from a directory:

3.3 Using BlockScript User Code

The BetterStateChart block is a reference to a BetterState chart that you create in 
BetterState. In a BetterState chart, you choose a language for the user code in a 
chart (for example, BlockScript). The inputs and outputs to the block are input 
and output chart arguments that you must define in the Data Dictionary.  For 
additional information about the BetterStateChart block , see the MATRIXX Help.

You provide code for state actions, transition conditions, and transition actions, or 
you can define an action as an invocation of a SystemBuild procedure SuperBlock. 
For this user code, you can use chart arguments or variables. You also must define 
all variables that you use in conditions and actions in BlockScript in the Data 
Dictionary. For additional information about the Data Dictionary, see the 
BetterState User’s Guide.

proc2_bsapi_.a BSAPI for procedure

model_.a Model for global specification

model.a Model for global body

model_ss1.a Subsystem 1 body

acmake update -f model.mak Incremental build for Ada only (the C 
makefile automatically determines whether 
to do an incremental or full build)

acmake -f model.mak Full build for Windows

acmake -f model.mk Full build for UNIX

acmake clean -f model.mak Deletes all build generated files from the 
directory
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This chapter details the management of the application control flow via the real-
time scheduler. Topics include scheduler operation sequence, subsystem 
properties, subsystem interruption, and examples of scheduler operation.

4.1 Real-Time Application Scheduler

AutoCode builds the scheduler as part of the real-time application program by 
means of the template file. The scheduler performs overall direction and control 
of inserting inputs, scheduling tasks, posting outputs, and dispatching the tasks 
that perform the work of the real-time system. Although you can tailor the 
scheduler as well as other parts of the code, the intention of this program is to 
provide a generic real-time scheduler, combining high performance with 
deterministic, prioritized, pre-emptive scheduling of application tasks that have 
different timing requirements. 

The application scheduler operates on the principle of rate-monotonic scheduling, 
deriving priorities for the tasks from the repetition rate for periodic subsystems 
and the timing requirement for triggered subsystems. The algorithm assigns 
higher priority to the faster sample rate or timing requirement subsystems and 
lower priority to slower ones (see Figure 4-1, p.60). The rate-monotonic algorithm 
maximizes the number of tasks that get to complete their operations in a given 
time. Using the rate-monotonic algorithm, all periodic tasks complete their 
operations if CPU task utilization does not exceed about 70%.
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For consistent and deterministic operation in a real-time environment, the task 
subroutines are scheduled and dispatched as encapsulated objects, which accept 
inputs and post outputs strictly under control of the scheduler. For this reason, all 
external input and output operations are handled by the scheduler directly and 
inter-task data transfer is performed via input sample and hold. The scheduler is 
re-entrant except for the critical section, which must not be interrupted. The 
scheduler can be called externally by means of an interrupt handler (for real-time 
applications) or by a background task (for simulation).

4.1.1 Subsystems

The term subsystem refers to the entities that are scheduled and dispatched for 
execution by the generated scheduler. The terms subsystem and task can be used 
interchangeably. By definition, a subsystem is an independently-scheduled 
program object, consisting of a single computational thread, which accepts inputs 
and posts outputs under the control of the scheduler at scheduler-specified times 
and which can be pre-empted. 

Subsystems are constructed by AutoCode from all SuperBlocks in a system that have 
the same computational timing requirements or attributes (sample rates, skew, timing 
requirements, enable signals, and triggers). AutoCode has four types of subsystem:

Figure 4-1 Rate-Monotonic Scheduling Algorithm
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Throughout this discussion, the behavior of the scheduler and of the subsystems 
is explained in terms of interrupts or scheduler interruptions. These interruptions 
are implementation-dependent, involving a hardware timer interrupt, a wakeup 
call, or some other method of invoking the scheduler. The operation of the 
generated code is the same, regardless of which method of invoking the scheduler 
is used. 

4.1.2 Flow of Control in the Generated Program

On start-up, initialization software (part of the standalone utilities) establishes a 
wakeup interrupt timing, time lines, priority queues, and initial conditions for the 
pre-emptible subsystems, and the manager/scheduler enters a ready state. As 

Enabled periodic
subsystem

Executed repetitively, but only while its enabling 
signal remains active.

Triggered subsystem Executed as and when its trigger is detected.
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illustrated in Figure 4-2, initial entry is to the background, which waits for the 
first interrupt or other wakeup action.

When the wakeup is received, the interrupt handler saves the interrupted context, 
if necessary, and passes control to the manager/scheduler. The scheduler checks 
external inputs and establishes a list of subsystems to be dispatched. It then posts 

Figure 4-2 Flow of Control in the Generated Program
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any external outputs and performs certain housekeeping before passing the 
dispatch list to the dispatcher. 

The dispatcher is basically a big switch that passes control to the subsystem in the 
dispatch list that has highest priority. It always checks to see if there are any 
previously dispatched, but interrupted, subsystems with higher priority before 
dispatching a newly scheduled subsystem from its dispatch list. If there are, the 
most recently interrupted subsystem (which should be of highest priority among 
previously interrupted subsystems and newly scheduled subsystems) is restored 
by the interrupt handler and allowed to continue. 

When the subsystem is finished, it passes control back to the dispatcher, which 
dispatches or restores the next-highest-priority subsystem, and so on. If all the 
currently dispatched subsystems and previously interrupted subsystems finish 
before a new timer interrupt is received, the interrupt handler returns control to 
the background. However, if a subsystem is still processing when the next 
timer interrupt is received, control passes to the interrupt handler, which again 
passes control to the manager/scheduler, which executes again. 

In the case of Ada code with tasks representing subsystems, the dispatcher 
simultaneously dispatches all tasks that are ready. The Ada tasks have priorities 
associated with them which determine the CPU availability for each task.

If the manager/scheduler has nothing to schedule at the next timer interrupt, the 
scheduler passes control back to the interrupt handler. The interrupt handler then 
restores whatever was running at the time of the interrupt. If any subsystems or 
the dispatcher were interrupted part-way through their execution, the interrupt 
handler passes control back to whatever was running (subsystem or dispatcher) 
at the time of the interrupt. If no such dispatchers or subsystems remain, control 
returns to the background.

4.2 Sequence of Scheduler Operations

Figure 4-3, p.65 illustrates the sequence of operations of the real-time application 
scheduler. The scheduler is represented as a bubble diagram (although it is not 
strictly a finite state machine), because during the “dispatch subsystems” phase 
(Bubble 9 in Figure 4-3), operations can be interrupted. During the critical section, 
however (Bubbles 1-8), it operates in the manner of a state machine. In the 
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discussion that follows, the term scheduler is sometimes used to refer to the 
critical section and dispatcher refers to the interruptible section. 

Because the first eight steps in the scheduler's operation are non-interruptible, 
critical steps, it is a Wind River policy to optimize critical code for maximum 
performance and to execute in the same amount of time on every cycle. This 
minimizes output jitter and avoids performance problems. 

1. Read External Inputs 

Bubble 1: On entry or re-entry, the scheduler collects the system external 
inputs so they can be used by the scheduled subsystems without a minor 
cycle delay. By definition, the minor cycle time of the application is the 
minimum scheduler cycle, a timing interval created from the sampling rates 
and timing requirements of all of the SuperBlocks in the system. The 
scheduler executes exactly once during each minor cycle.

2. Check Triggers and Enables 

Bubble 2: The scheduler prepares for scheduling the subsystems by first 
determining which triggered and enabled subsystems are eligible to execute 
during this minor cycle. This step is not performed for systems that have no 
enabled or triggered subsystems. For enabled subsystems, the scheduler 
checks the subsystem state. If the state is blocked (that is, ready to run but 
waiting for an enable signal), the subsystem is ready to execute. If the enable 
signal is set, the scheduler queues it for execution.
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Figure 4-3 Scheduler Operation
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However, if the subsystem is in an idle state and the enable signal is true, the 
subsystem scheduler must determine whether the correct time has arrived for 
this subsystem to execute. If it is not yet time, the subsystem waits in the idle 
state until it is time to execute. See 4.3.2 Enabled Periodic Subsystems, p.71 for 
further details.

For triggered subsystems, if the trigger signal is true, the scheduler checks the 
subsystem state and proceeds appropriately for the subsystem type. At this 
stage, when a triggering signal is received and the triggered subsystem is in a 
blocked state waiting for a trigger, the scheduler queues it for execution. If the 
triggered subsystem is in an idle state, the subsystem is also queued for 
execution, but the outputs are posted or not posted, depending on the type of 
the subsystem. See 4.3.3 Triggered Subsystems, p.74 for further details.

3. Clear the Ready Queue

Bubble 3: The scheduler clears the ready queue for all the subsystems. The 
ready queue is established by the scheduler in Bubble 4 and used in Bubble 8 
to determine which subsystems are to have their input sample-and-holds 
updated. 

4. Schedule the Subsystems

Bubble 4: The scheduling algorithm is performed. For scheduling each of the 
subsystems, the scheduler checks for timing overflow (when a subsystem is 
still running, even though it is time to start running its next cycle; that is, the 
duration of the subsystem’s execution has lasted longer than its cycle time). 
For each subsystem, the scheduler also checks all the criteria that determine 
whether the subsystem is to be dispatched.

These criteria are:

● Continuous

The continuous task is dispatched (through the integrator) every time the 
dispatcher is invoked.

An element of the scheduler is the Integrator (see Figure 4-4, p.68). It 
performs continuous, fixed-step integration of states and implicitly 
dispatches the continuous subsystem to perform the state and output 
updates. The integrator/continuous task pair is by default treated as the 
fastest task to be dispatched by the scheduler. You can also specify the 
rate with the -csi option, but it must be at least as fast as the fastest 
periodic task in the model. For details regarding continuous code 
generation, see Chapter 5.

● Free-Running Periodic
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The appropriate time has arrived, as determined by the time line table 
and the elapsed time counter.

● Enabled

The correct time has arrived, the enable signal is still true, and the 
subsystem was in the Idle State in the previous minor cycle (the state in 
which the enable signal is true, but the correct time has not yet arrived).

or:

The enable signal has just become true and the subsystem was in the 
Blocked State in the previous minor cycle (the state in which the enable 
signal is false).

● Triggered

The trigger signal has transitioned from false to true since the start of the 
last minor cycle. This condition is also checked for in Bubble 2. If the 
triggered block type is Asynchronous, and if the subsystem is to be 
dispatched by the Scheduler (that is, if the triggering signal is not an 
External Input), the subsystem triggers if the triggering signal has 
transitioned either from false to true or from true to false since the start of 
the last minor cycle. If the triggering signal for the Asynchronous 
subsystem is an External Input, the subsystem is dispatched separately 
from the Scheduler; see Properties of Asynchronous Subsystems, p.78 for 
details.

Based on these criteria, the scheduler builds up the ready queue and adds 
the subsystems that are to execute to the dispatch list. The difference 
between the dispatch list and the ready queue is that subsystems that 
were on the dispatch list, but not dispatched on the previous cycle, are 
brought forward on the dispatch list for dispatching on this cycle or later. 
By contrast, the ready queue is cleared and built up again on every cycle. 

As indicated in Bubble 4 and explained in more detail in the section that 
follows, the scheduler uses the computational attributes of the 
subsystems to establish the priority for dispatching the subsystems. The 
computational attributes include the sample rate and the type of the 
subsystem. The priority sequence established using the computational 
attributes runs from fastest sample rate or timing requirement to slowest. 
For a tie in sample rate or timing requirement, the priority for execution is 
based on the type of subsystem, from highest to lowest:

Continuous

Free-Running Periodic 
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Enabled Periodic 

Triggered Asynchronous

Triggered As-Soon-As-Finished 

Triggered At-Timing-Requirement 

Triggered At-Next-Trigger

Using the above priority rules, the subsystems are assigned their task IDs 
in the sequence 1, 2, 3, ... NTASKS, with the highest priority subsystem 
getting the lowest ID number (that is, 1) and the lowest priority 
subsystem getting an ID of NTASKS. NTASKS is the number of tasks in 
the system and is also the name of the variable in the code which 
represents that number. The task IDs are assigned at code generation 
time.

5. Write External Outputs and Signal Remote Dispatch

Bubbles 5 & 6: The scheduler calls the external output routine to post all 
subsystem outputs at every minor cycle. In multiprocessor implementations 
only, the dispatch list and a remote dispatch signal are posted to the 

Figure 4-4 Scheduler Architecture
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secondary processors (Bubble 6) to signal the availability of the dispatch list 
and mark the start of subsystem execution. 

6. Update Elapsed Time and Sample & Hold

Bubbles 7 & 8: In multiprocessor implementations, every secondary 
processor’s scheduler subsystem may or may not need to perform an elapsed 
time update (Bubble 7), but will be required to perform a “sample and hold” 
subsystem input (where the scheduler reads the inputs and latches them for 
use by the subsystem, Bubble 8) and a subsystem dispatch (Bubble 9). The 
scheduler updates the elapsed time counter (Bubble 7), if required. Bubble 8: 
the scheduler in each processor consults the ready queue to perform a 
sample-and-hold on the subsystem inputs for the subsystems that have been 
added to the dispatch list. For determinacy reasons, subsystems remaining in 
the dispatch list from a prior cycle will not have their inputs sampled again. 
This step is the end of the critical section. 

7. Dispatch Subsystems

Bubble 9: The dispatcher is re-entrant and it can be interrupted at any point in 
its operations. This re-entrant step accepts the dispatch list and queues the 
subroutines for execution. This step also includes the execution of 
subroutines, which can be interrupted/pre-empted at any time.

4.3 Properties of Scheduled Subsystems

A scheduled subsystem is viewed as a finite state machine that is represented as a 
State Transition Diagram (STD). A finite state machine always exists in exactly 
one of its defined states, where it remains until some change forces it to transition 
to another state. No more than one transition can take place on each cycle of the 
subsystem in which the STD resides. These STDs have the same timing 
conventions as other state machines in SystemBuild. The STDs are illustrated in 
Figure 4-5, p.70, Figure 4-6, p.71, and Figure 4-8, p.76; associated timing diagrams 
are shown in Figure 4-7, p.73 and Figure 4-10, p.78. 
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4.3.1 Free-Running Periodic Subsystems

Figure 4-5 shows the operation of a free-running periodic subsystem. A free-
running subsystem is always enabled and it exists in its idle state until the 
scheduler decides it is time for the subsystem to run (that is, its sample time has 
arrived). At that time, the subsystem posts its outputs and enters the running 
state. This also applies on start-up, when the subsystem theoretically has not yet 
executed and has no outputs to post; the simulation user can control the way that 
this start-up output is generated by using the sim...{initmode} command (see the 
SystemBuild User’s Guide).

A subsystem accepts its inputs just before starting; this event is associated with 
the transition before the running state is entered. With specified exceptions, the 
subsystem posts its previous outputs at that same time (that is, just before 
running). The exceptions are associated with enabled and triggered subsystems 
and are shown in the State Transition Diagrams. 

When a subsystem is running (that is, manipulating its outputs), the outputs of 
the previous cycle are latched (double-buffered) and can be read. Note the 
overflow condition that occurs when a subsystem is in the running state and it 
becomes time for it to start running again. This means that it did not finish its 
execution in time. This is a fatal error in systems that must operate in a real-time 
environment. When the subsystem finishes, it performs the appropriate 
housekeeping subsystems and then returns to the idle state; but for reasons of 
determinacy, it does not post its new outputs until it is started up again. 

Figure 4-5 Free-Running Periodic Subsystem as a State Machine
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4.3.2 Enabled Periodic Subsystems

Figure 4-6 shows the state diagram for an enabled periodic subsystem, illustrating 
the blocked state during which it is disabled. 

In simulation, these subsystems can be scheduled to run only on a predefined 
time line established by the subsystem’s sample rate and when the subsystem is 
enabled at the same time. If a disabled subsystem is enabled after its synchronous 
start time in the time line, it has to wait until its next major cycle (the repetition 
time of the enabled periodic subsystem) to run. The blocked state is used in the 
generated code to eliminate latencies that would occur if a disabled subsystem 
were to receive its enable signal several minor cycles before its synchronous start 
time in the time line (its major cycle).

When the enable goes true while the subsystem is in the blocked state, the 
subsystem is scheduled to run at the next minor cycle; if it has priority over other 
contending subsystems, it is executed immediately, at the same minor cycle of the 
real-time scheduler. The behavior of the scheduler can differ, however, depending 
on whether the enable signal is generated internal to the system (as the output of 
another subsystem) or presented as an external input to the system. See the timing 
diagram (Figure 4-7, p.73) for these distinctions.

Figure 4-6 Enabled Periodic Subsystem as a State Machine
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In the example shown in Figure 4-7, the major cycle is three times as long as the 
minor cycle of the system. When an external enable signal is detected at the 
beginning of a major cycle, (as shown at point A); the enabled subsystem is 
dispatched for execution immediately.

In Figure 4-7, item B shows the case in the generated code concerning enables that 
are presented as external inputs, asynchronous to the original time line. The 
scheduler attempts to process these inputs as quickly as possible. This is also 
shown in Bubble 2 of Figure 4-3, p.65, where external inputs are gathered 
immediately upon initialization of the scheduler, so they can be processed 
without delay. In Figure 4-7 at B, in the generated code the subsystem is queued 
for execution at the minor cycle following the instant when the enable signal was 
detected true. Note the timing window indicated at C. During that interval, it 
does not matter whether the external enable is presented synchronously with the 
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minor cycle or before it; both the simulation and the generated code operate 
identically. 

At D, the signal appears at the start of a major cycle and is applied immediately. 
At E, the signal appears one minor cycle after the start of a major cycle and incurs 
a two-minor-cycle delay. 

At F, the enable occurs one minor cycle before the beginning of the major cycle 
and consequently, the delay is one minor cycle. By contrast, at points D, E, and F, 
illustrating the operation of generated code, the internally generated enable signal 
is also synchronized through the application scheduler. It is always delayed 
exactly one minor cycle before being applied. The reason for this delay is implied 

Figure 4-7 Enabled Subsystem Timing
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in Bubble 8 of Figure 4-3, p.65. Here, input sample-and-holds are performed after 
the determination of which subsystems are to be dispatched for execution on this 
(the first) minor cycle, so the application of the synchronous enable in generated 
code is always deferred for one minor cycle.

4.3.3 Triggered Subsystems

Figure 4-8, p.76 shows the State Transition Diagrams for triggered, asynchronous 
subsystems. The types of triggered subsystems differ mainly in the manner in 
which they post their outputs. Just like enabled subsystems, certain types of 
triggered subsystems have a blocked state, from which they can be invoked 
immediately when the trigger is detected. (By default, the trigger is defined as the 
positive-going edge of the triggering signal, but provision is made in the template 
files for changing it to detect a negative-going edge.) The properties of the types 
of triggered subsystems are illustrated as State Transition Diagrams in Figure 4-8, 
p.76, and Figure 4-9, p.77 (for asynchronous), and in a consolidated timing 
diagram in Figure 4-10, p.78. These properties are summarized as follows:

At Timing Requirement
 (ATR)

Specify a timing requirement (number of 
system minor cycles) in the SuperBlock 
block form. The outputs are always posted 
exactly that number of cycles after the 
subsystem is triggered for execution. ATR is 
used especially in systems where 
determinacy must be guaranteed.

At Next Trigger (ANT) The subsystem only posts its outputs when 
it is next triggered for execution, however 
long that may be. ANT is used for modeling 
certain kinds of variable rate, but repetitive 
activities, such as a shaft that rotates at a 
variable speed. This type of subsystem has 
no blocked state.
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As Soon As Finished (SAF) The outputs are posted at the beginning of 
the minor cycle after the subsystem finishes 
running. SAF is used for maximum 
performance, but might compromise 
determinacy.

Asynchronous (ASYNC) If dispatched by the scheduler, the outputs 
are posted at the beginning of the next 
minor cycle after the subsystem finishes 
running. This will occur if the triggering 
signal is an output of another subsystem. If 
dispatched as a result of an asynchronous 
interrupt, the outputs are posted as part of 
the interrupt handler, and are available to 
scheduled systems immediately.
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Figure 4-8 Triggered Subsystems as State Machines
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In Figure 4-10, p.78, a timing requirement equal to four scheduler minor cycles 
has been established. When the trigger signal is received, the subsystem is started 
at the next scheduler minor cycle (point A1). In this example, although the timing 
requirement is four (point A2), the subsystem actually completes execution in 
slightly less than three cycles. This illustrates the kinds of output posting: 

■ ASYNC - The output is seen at point B, three cycles after the subsystem was 
started, assuming this subsystem was dispatched by the scheduler. 

■ SAF - The output is seen at point B, three cycles after the subsystem was 
started. 

■ ATR - The output becomes available at point C, exactly four cycles after start-
up. 

■ ANT - The output is not available until point D, when the subsystem is next 
triggered for execution.

Figure 4-9 ASYNCHRONOUS Triggered Subsystems as State Machines
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4.4 Properties of Asynchronous Subsystems

Asynchronous subsystems (procedures or asynchronous trigger subsystems) are 
so called because of their noncyclic or unscheduled execution in a real-time 
application. These subsystems should be viewed as special purpose entities and 
should be used accordingly.

The asynchronous subsystems are not directly managed or scheduled by the 
application scheduler as are the synchronous subsystems. Scheduled subsystems 
can execute only at the start of a scheduler minor cycle and not instantaneously 

Figure 4-10 Timing of Triggered Subsystems
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(for example, at the arrival of an external event). This adds latency to the 
execution of certain subsystems, which absolutely cannot wait until the next 
minor cycle for execution. Asynchronous subsystems are designed to solve this 
problem.

The kinds of asynchronous subsystems (see Figure 4-11, p.80) that you can 
generate in an AutoCode application are:

■ Start-up procedure

■ Asynchronous subsystem

■ Interrupt procedure

■ Background procedure

4.4.1 Start-up Procedure

This procedure is defined in SystemBuild using the Start-up Procedure 
SuperBlock. The purpose of this start-up procedure is to initialize the application 
data at start-up time. This data includes variable block data and %variables 
represented by variable blocks. It is only via the Startup SuperBlock that you can 
initialize the %variables in SystemBuild at run time. Usually, the start-up 
procedure is called at the system initialization phase. Refer to the SystemBuild 
User’s Guide for more details on the Startup SuperBlock description.
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Figure 4-11 AutoCode Real-Time Application Execution Sequence
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4.4.2 Asynchronous Trigger Subsystems

Subsystems formed by collections of Asynchronous Triggered SuperBlocks 
(ATSBs) with the same triggering signal are handled differently depending upon 
the source of the triggering signal. 

If the triggering signal is internal to the model (that is, if the triggering signal is 
not an external input), these subsystems function similarly to the Triggered - Soon 
As Finished subsystems with the following exceptions:

■ The ATSB subsystems have higher priority than the SAF triggered 
subsystems (that is, they are executed before other triggered subsystems).

■ The triggering signal to ATSB subsystems is double-edged; the ATSB 
subsystem will be scheduled if its triggering signal transitions from low to 
high or from high to low during the previous scheduler cycle. This is to 
maintain compatibility with the use of these subsystems in simulation.

If the triggering signal is external to the model (that is, the triggering signal is an 
external input), then the ATSB subsystem is handled specially in the template. In 
this case, two pieces of code are generated; the regular (nonreentrant) triggered 
subsystem code, and a small (reentrant) wrapper that is designed to function as 
an interrupt service routine (ISR). This wrapper is wholly generated in the 
template, and can be customized for the user’s application. In the templates 
provided by Wind River, the wrapper for the ATSB subsystem does the following:

■ Checks for reentrancy, and reports an error if the wrapper is reentered. Note 
that the wrapper could instead queue calls to the subsystem code, but under 
no circumstances should the subsystem code be reentered.

■ Gathers the subsystem inputs from external inputs and outputs from other 
subsystems.

■ Invokes the ATSB subsystem.

■ Posts the ATSB’s subsystem outputs, updating the external output structures 
as necessary.

In the default template, the ATSB wrapper is a procedure requiring neither inputs 
nor return values. 

Note that ATSB subsystems differ from Interrupt Procedure SuperBlocks (see 
Asynchronous Trigger Subsystems) in the following ways:

■ The inputs and outputs to these subsystems can be represented in the model 
like those of other standard SuperBlocks without incurring processing 
overhead at interrupt time.
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■ These subsystems are simulatable by the SystemBuild simulator.

■ States are supported in ATSB subsystems, but not in Interrupt Procedure 
SuperBlocks.

■ Calls to Procedure SuperBlocks are supported on ATSB subsystems.

■ These subsystems are not reentrant, even though the wrapper is reentrant, 
and thus can be designed in such a way to support asynchronous interrupts 
that may occur before the processing of the ATSB subsystem code is complete.

For more information on Asynchronous Trigger SuperBlocks, see the SystemBuild 
User’s Guide. 

4.4.3 Interrupt Procedure

This procedure is defined in SystemBuild using the Interrupt Procedure 
SuperBlock. The purpose of this SuperBlock is to model the Interrupt Service 
Routine (ISR). This ISR model in SystemBuild is generated as an interrupt 
procedure by AutoCode and can be executed on arrival of a specific interrupt 
signal. Using variable blocks, implicit communication can be established to any 
other subsystem in the application.

The execution of the interrupt procedure is done directly on arrival of an external 
interrupt or an event; the AutoCode scheduler does not manage, monitor, or 
schedule this procedure. However, since the AutoCode scheduler, as supplied, 
employs rate monotonic scheduling principle, it is possible that interrupt 
procedure execution will overflow the synchronous task execution. Interrupt 
procedure users should keep the interrupt procedure execution time to a 
minimum and should keep enough time buffer in each scheduler cycle for 
possible execution of interrupt procedures. Please refer to the SystemBuild User’s 
Guide for more details on the Interrupt Procedure SuperBlock description.

4.4.4 Background Procedure

This procedure is defined in SystemBuild using the Background Procedure 
SuperBlock. The purpose of the background procedure is to represent the logic 
executed when the system is idle, in the background mode of operation. Typically, 
the background procedure should be executed as the lowest priority task and 
only if no other tasks need to be performed in the system. Please refer to the 
SystemBuild User’s Guide for more details on the Background Procedure 
SuperBlock description.
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4.5 Reentrancy and Preemption: The Dispatcher

The generated application program is interruptible except at the critical section of 
the scheduler. The scheduler is automatically created by AutoCode, using the 
template file, to provide input/output calls, scheduling, error handling, and 
dispatching services for the generated application program. All the services, 
except for dispatching of the subsystems, are performed in the critical section. The 
critical section is kept as brief as possible; one of several reasons for this 
minimization is to allow maximum time for the subsystems to execute. 

The subsystems operate under different constraints as compared to those of the 
time-critical scheduler. A subsystem cannot execute more frequently than the 
scheduler does and in many cases, it will run far less often. However, the 
subsystem may require considerable time for each execution pass. Consequently, 
it can be interrupted repeatedly by scheduler execution. Thus, the subsystem code 
must be completely interruptible. It must be able to be interrupted by the 
scheduler and thus to be pre-empted by higher priority subsystems. It must also 
be able to restart at any point in its operations. 

The only timing requirement of the subsystem is that it must finish executing 
before the next time it is to be queued for execution. A subsystem being ready to 
run and simultaneously not finished running, defines the condition called 
“subsystem timing overflow.” This is a catastrophic error in any system that 
requires deterministic operation.

The scheduler can add subsystems to the dispatch list at any cycle of the 
scheduler’s operations. However, the dispatcher only removes the subroutine 
from the list when the subsystem has begun its operations. Determinacy and 
proper operation of a pre-empted subsystem both demand that the inputs receive 
a sample-and-hold to a subsystem only once per execution, when first queued. As 
a result, a second list, the ready queue, is employed to determine which 
subsystems will have their inputs sampled and held this cycle. The ready queue is 
cleared and set up by the application scheduler once every minor cycle.

When the ready queue is cleared, the scheduler determines which subsystems are 
to be queued for dispatch this cycle and places the subsystems into the ready 
queue and the dispatch list. Note that the scheduler never removes a subsystem 
from the dispatch list; only the dispatcher has that duty. The following examples 
explore these ideas graphically, following the scheduler and dispatcher through a 
few cycles of operation, showing how the subsystem states, the ready queue, and 
the dispatch list change over time. 
83



MATRIXX 7.0
AutoCode User’s Guide
Other examples show the operation of a scheduler with more complex timing 
requirements (“pseudo-rate scheduler”) and its special conditions and error 
conditions. 

4.6 Scheduler Examples

The examples presented in the subsections that follow describe scheduler 
operation both when sampling rates and timing requirements for all subsystems 
are common multiples and when they are not common multiples, thus requiring a 
pseudo-rate for the scheduler. Operating with skew is also discussed.

4.6.1 Dispatching and Pre-emption Example

The illustrations, starting with Figure 4-12, show a system with five subsystems: 
three periodic, one enabled, and one triggered. The subsystem list identifies 
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which subsystems are periodic, enabled, or triggered, and shows them in priority 
order.

The subsystem state list identifies the state of the subsystem. The ready queue is 
used by the scheduler to determine which subsystems are to have their inputs 
sampled and held. When the scheduler determines that a subsystem is to be 
dispatched for execution, the subsystem is placed into this list. When a subsystem 
is dispatched for execution, it is removed from the list by the dispatcher. In 
Figure 4-12, the subsystems are idle or blocked, each awaiting its condition to 
start running. 

In Figure 4-13, the time has arrived for subsystem 1 to execute and the enable 
signal for subsystem 3 has been received. The numbers of the two subsystems are 
entered into the ready queue in reverse order of priority and the ready count is set 
to equal the number of subsystems that are ready (that is, 2). The corresponding 
entries in the dispatch list are marked true. The dispatch count (which is the 
pointer to the lowest priority subsystem that is ready for dispatch) is set to 3. The 

Figure 4-12 Scheduler Data Structures at Initialization: 1
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immediate effect of this is that the inputs for subsystems 1 and 3 are sampled and 
held, and control is passed to the dispatcher.

The action of the dispatcher is shown in Figure 4-14, where subsystem 1 (the 
highest priority subsystem) is actually executing and subsystem 3 is waiting to be 
dispatched. The dispatch count is still equal to 3, pointing to the subsystem of 
lowest priority that is still either running or in the dispatch list. When subsystem 
1 completes its operations (is no longer running), the system moves to the state 
shown in Figure 4-15.

Figure 4-13 Scheduler Data Structures: 2
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Figure 4-14 Scheduler Data Structures: 3
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In Figure 4-15, subsystem 1 is marked idle in the subsystem state table and 
subsystem 3 is dispatched and running. All the entries in the dispatch list are 
marked false, indicating that no subsystems currently need to be dispatched. 
However, the dispatch count pointer is still pointing to subsystem 3, indicating that it 
is not finished executing. Now, while subsystem 3 is still working, a scheduler 
interruption occurs.

The scheduler is re-entered and, as a part of the scheduling loop, subsystems 1, 2, 
and 5 are all marked ready (see Figure 4-16). Subsystems 1, 2, and 5 have been 
entered into the subsystem state list as running and the interrupted subsystem 3 
remains in a running state. Therefore, subsystems 1, 2, and 5 are placed in the 
ready queue to have their inputs sampled and held. Note that subsystem 3 cannot 
be placed in the ready queue, because it has already received its inputs for this 

Figure 4-15 Scheduler Data Structures: 4
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operations cycle. Now, subsystem 1 and then subsystem 2 will be dispatched for 
execution.

When subsystems 1 and 2 are both finished (see Figure 4-17), the dispatcher notes 
that subsystem 3 is in a running state, but is not in the dispatch list. The 
dispatcher checks its records and determines that subsystem 3 was actually in 
the process of executing when the next scheduler cycle occurred. Thus, the 
subsystem needs to have its context restored by the interrupt handler, not by the 
real-time application scheduler. Therefore, the scheduler dispatcher performs an 

Figure 4-16 Scheduler Data Structures: 5
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exit, which passes control back to the operating system interrupt handler. The 
interrupted subsystem is restored from there.

When subsystem 3 is finally finished executing, as shown in Figure 4-18, 
subsystem 5 is dispatched and executes.

Finally, when subsystem 5 is also finished, the situation is as represented in 
Figure 4-19. At this point, no subsystems are running, nothing is to be dispatched, 
and the next interruption for scheduler operation is sometime in the future. The 

Figure 4-17 Scheduler Data Structures: 6
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Figure 4-18 Scheduler Data Structures: 7
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dispatcher responds by passing control to the operating system interrupt handler, 
which restores and passes control to the background subsystem. 

This background subsystem consists of interruptible code that does not return, 
but waits to be interrupted. It might be nothing but a loop that waits to be 
interrupted, or it might perform any of a range of low-priority program tasks, 
such as self-diagnosis and updating displays. For example, some Interactive 
Animation displays are updated by the background subsystem.

Figure 4-19 Scheduler Data Structures: 8
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The operation of the scheduler and the subsystems in this example are shown in 
the form of a timing diagram in Figure 4-20. The numbers in circles correspond to 
the numbers at the end of each figure title associated with each of the figures for 
this example.

4.6.2 Pseudo-Rate Scheduler

The previous example assumed that the repetition rate of the scheduler (the 
scheduler minor cycle) was the same as the sampling rate of the fastest 
subsystem, subsystem 1. This correspondence holds true only if the sampling 
rates and timing requirements of all of the subsystems are common multiples. 
Thus, in the example, the sampling rate of subsystem 1 might be 1 unit, the 
sampling rate of subsystem 2 might be 2 units, and that of subsystem 4 might be 3 
or more units. 

Figure 4-20 Dispatcher Example as a Timing Diagram
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However, if the sampling rates or timing requirements of the subsystems are not 
even multiples, AutoCode establishes a “pseudo-rate” for the scheduler, based on 
the least common multiple of the rates of the subsystems. The simplest case of a 
pseudo-rate is shown in Figure 4-21, where there are two free-running 
subsystems: subsystem 1 with a sampling rate of 2 and subsystem 2 with a rate of 
3. At time step 1, the scheduler places both subsystems into the dispatch list and 
they are both executed. But at step 2, the time to execute has arrived for neither of 
them and nothing runs; the same thing is true at step 6. However, the scheduler 
still must complete its cycle of operations, that is, the first 7 steps of Figure 4-3, 
p.65, even though there is nothing ready to be scheduled. The cycles thus wasted 
might have a negative impact on system performance. For this reason, use 
sampling rates that are all even multiples in systems where performance is an 
issue. 

What happens at the beginning of step 2 depends on whether or not the 
subsystems had completed running before the end of the last cycle. If a subsystem 
(subsystem 2, presumably) had still been running when the scheduler 
interruption occurred, at the time the scheduler completed its cycle with nothing 
in the dispatch list, the dispatcher would pass control back to the interrupt 
handler. The interrupt handler would invoke the operating system to restore the 
interrupted subsystem and pass control to it. If all subsystems had finished 
operation, then it would have been the background subsystem that was 
interrupted. The operating system would restore this subsystem instead and pass 
control to the background. 

Figure 4-21 Dispatcher Operation with a Pseudo-Rate Scheduler
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4.6.3 Operating with Skew

Skew, or First Sample in the SuperBlock block form, is a method for controlling 
the operation of the subsystems on the time line. The sampling interval lets you 
specify the periodicity of the subsystem, and the first sample lets you establish an 
offset from the beginning of the minor cycle on which the subsystem first 
becomes eligible to execute. One of the uses for skew is to force a slower-rate 
subsystem to execute before a faster-rate one, when either could run on the same 
cycle. 

As shown in Figure 4-22, at A, subsystem 1 is running at twice the sampling 
interval of subsystem 2. Therefore, subsystem 1 has priority. It is assumed that 
both subsystems receive external input data and that each subsystem posts 
outputs to the other. At time step 1, when the system is started, both subsystems 
receive as internal, sampled-and-held inputs whatever initial states you might 
have defined. But at time step 3, the outputs of subsystem 2 from its first major 
cycle are latched as inputs to subsystem 1 and the system is running in sync. The 
outputs from subsystem 1’s operations during its secondary cycle are latched and 
fed to subsystem 2 to serve as its inputs at time step 3. 

From that time forward, the outputs of every major cycle of subsystem 2’s 
operations are presented as inputs for the next (odd-numbered) cycle of 
subsystem 1’s operations (steps 3, 5, ...). Those same inputs are still visible to 
subsystem 1 on its next even-numbered cycle (steps 4, 6, ...). And subsystem 1’s 
outputs from the even-numbered (minor) cycle serve as inputs to subsystem 2 on 
the odd-numbered (minor) cycle (latched at steps 3, 5, ...).
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Subsystem 2 never sees the outputs of subsystem 1 from its odd-numbered cycle, 
for there is no sample-and-hold performed between the end of subsystem 1’s odd-
numbered step and the beginning of subsystem 2’s operations. In the bottom part 
of the figure, at B, a skew of 0.5 has been added to the timing properties of 
subsystem 1 and no other change has been made. But the system will operate 
quite differently from A. First, the scheduler minor cycle is now a pseudo-rate, 
introduced so that the start-up of subsystem 1 can be scheduled and dispatched 
correctly. Also, characteristic of pseudo-rate schedulers, there are steps where the 
scheduler has no scheduling to do (steps 2, 4, 6, ...). Even so, the critical part of the 
scheduler must go through its full cycle of operations. This, of course, has an 
impact on overall system performance.

Observe that even though subsystem 1 would have priority, subsystem 2 starts 
executing before subsystem 1 in this example, because subsystem 2’s time to run 
arrives before that of subsystem 1. Thus, at step 1, subsystem 2 starts up with 
initial states as its inputs and posts its outputs at time step 3 to be latched and 
made inputs to subsystem 1 at time step 3.5. 

Figure 4-22 Operation of Skew
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Now, as at A, subsystem 1 runs through two full cycles of its operations before 
subsystem 2 can run again. When subsystem 1 starts at timestep 1.5, its outputs 
are posted at timestep 2.5, and when it starts at timestep 2.5, its outputs are posted 
at timestep 3.5, and so on. Unlike example A, the outputs from subsystem 1’s odd 
numbered cycles are visible to subsystem 2 at time steps 3, 5, ..., and the outputs 
of subsystem 2 posted at time steps 3, 5, ... are presented to subsystem 1 at time 
steps 3.5, 5.5, .... Consequently, the subsystems are synchronized differently in the 
two examples and the two systems can be expected to behave in very different 
ways at the micro-level. 

4.7 Scheduler Errors

The exact method for controlling the scheduler minor cycle interruptions is 
implementation-dependent. In the absence of standardization of the hardware 
and software for this and other functions within an embedded system, Wind 
River has not attempted to furnish a timing simulator, choosing instead to 
emphasize functional simulation. This is one major reason for our emphasizing 
the development of rapid prototyping or test bed systems, which can help you 
evaluate the performance aspects of systems where simulation cannot easily 
reach. However, we can postulate two kinds of timing problems that could be 
detected. The application scheduler traps both: scheduler overflow and 
subsystem overflow.

4.7.1 Scheduler or Subsystem Overflow

■ Scheduler Overflow - If the non-interruptible critical section of the scheduler 
is running and an interruption for the scheduler occurs, then the scheduler is 
receiving more interrupts than it can handle. To prevent this, the length of the 
scheduler minor cycle must be increased, the interrupt timer rate must be 
decreased, or a faster processor must be obtained. 

■ Subsystem Overflow - Might be intermittent or rare, might or might not be a 
catastrophe in the context of a given system, and flexible means for dealing 
with it are provided. Subsystem overflow is defined as a subsystem ready to 
run and still not finished running. Figure 4-23 shows a graphical 
representation of this condition.
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In Figure 4-23, subsystem 2 is free-running with an intermediate sampling 
rate. Subsystem 1, with a shorter timing requirement and therefore higher 
priority than subsystem 2, is triggered and runs only occasionally. When it 
does run, at step 2, it takes a considerable amount of time. When it finishes 
and subsystem 2 starts, there is not enough time for subsystem 2 to finish 
before the scheduler’s interruption for step 3 is received. This would be 
acceptable, because subsystem 2 is required to be interruptible. However, at 
step 3, the scheduler notes that it is time for subsystem 2 to run again and 
enters it into the ready queue and the dispatch list. The scheduler also notes 
that subsystem 2 is not finished and that is where the problem begins. The 
scheduler cannot post sample-and-hold inputs for a subsystem that is not 
finished, resulting in a subsystem overflow. For some systems, the subsystem 
overflow is not critical. 

4.7.2 Examples Where Overflow is Irrelevant or Cannot Happen

■ A triggered subsystem with output posting As Soon As Finished cannot 
overflow. 

■ The background cannot overflow.

Figure 4-23 Subsystem Overflow Example
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■ In a subsystem where timing is not really critical, you might wish to disable 
the overflow indication, or to give it a slower sampling rate. Provision is 
made for customizing handling of the subsystem overflow error in the 
template files. 

Most blocks in SystemBuild operate in a largely synchronous manner, executing 
once each time the subsystem is dispatched and contributing little to the 
generation of intermittent overflows. Even so, several conditions can contribute to 
the generation of subsystem overflows: 

■ A heavy load of triggered asynchronous events (see Figure 4-23, p.96).

■ While blocks execute a user-defined number of times in a given subsystem. If 
the number of iterations is variable, the amount of time to execute the 
subsystem becomes nondeterministic.

■ If/else blocks have different logic depending on which branch is selected. If 
some branches have significantly more processing than others, the amount of 
time to execute the subsystem becomes less deterministic.

■ User-supplied I/O drivers, which have variable execution time, such as a 
pulse-width-modulation driver that immediately returns if the duty cycle has 
not changed. Wind River avoids this practice in its implementation systems to 
the greatest degree possible. 

■ Your system might be over-extended. The code that is generated for 
SystemBuild blocks is optimized for performance, but any system can be 
overloaded by too many tasks doing too much work in a given cycle. 
Naturally, if this kind of overload occurs, the situation is likely to be 
catastrophic and reasonably easy to detect. But on a heavily loaded system, 
minor perturbations such as triggered subsystems or heavily loaded if/else 
constructs could cause an occasional overflow, which would be hard to 
debug. 
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5

Code Generation for Discrete

Systems
This chapter introduces features of the generated code for discrete systems. This 
includes scheduler architecture as it relates to discrete code generation.

5.1 Introduction

A discrete system is a model that does not contain any Continuous SuperBlocks. 
The general categories are single-rate, multi-rate, and procedural discrete 
systems.

Single-rate discrete system  — Contains SuperBlocks that use the exact same timing 
attributes. 

Multi-rate discrete system  — Contains SuperBlocks with different timing attributes. 

Procedural discrete system  — Contains only procedure SuperBlocks and therefore 
has no timing attributes. 

A table describing all the options that control code generation can be found 
within Appendix A, AutoCode Options. For more information about the structure 
and content of the generated code, see the AutoCode Reference.
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5.2 How to Generate Code for Discrete Systems

The minimum options required to generate code for a discrete subsystem are: 
choice of language and top-level SuperBlock or real-time file (.rtf). This is shown 
in Chapter 2.1 , Using AutoCode. Additional options are specified along with the 
required options. A separate options file can be used as a replacement to specify 
options directly to AutoCode.

5.3 Introduction to Vectorized Code

A vectorized discrete system is a discrete system that uses array variables in the 
generated code to implement vectors for the purposes of bundling signals 
together to enable loops within the generated code. The resultant vectorized code 
is more efficient in terms of code size and performance as compared to the 
nonvectorized equivalent. There is no need to generate vectorized code unless 
you are interested in gaining performance improvements and reducing code size 
on your target hardware. In other words, there is no difference in numerical 
results between vectorized and non-vectorized code, but how those results are 
obtained is significantly different.

By default, AutoCode generates nonvectorized code. You must specify an option 
to produce vectorized code (see the -Ov entry in Table A-1, p.161). That option 
controls two variations of vectorization which are summarized below.

Maximal Vectorization  — This option directs AutoCode to create vectors everywhere 
possible. Traceability in the generated code is reduced as only one name can 
be used to represent many signals from the same block.

Label-based Vectorization  — This option directs AutoCode to selectively create 
vectors for only those signals that have a vector name or label as specified in 
the diagram. This variation lets you specify exactly what signals are to be 
generated as a vector and exactly what the name of the array is within the 
generated code. Any signal that does not have a vector name or label will be 
generated as a scalar variable.
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5.4 Introduction to Optimized Code

AutoCode produces generated code that is nearly one-to-one compared to the 
blocks used in the diagram. However, performance constraints of target hardware 
require optimization of the generated code. One would expect the target compiler 
to optimize the code, but many target compilers provide minimal optimization 
capabilities. Therefore, AutoCode can be directed to perform some optimizations 
that favor better executable code. Of course, there is a price to be paid; traceability 
back to the model’s diagram is significantly reduced when optimized.

By default, AutoCode does not perform any special optimizations. You must 
specify which type of optimizations you desire. Some of the optimizations are 
summarized below.

Variable reuse  — Reuse local variables within the code as the outputs of more than 
one block.

No restart  — Generate code that cannot be restarted on the target unless the object 
code is reloaded.

Variable Block read propagation  — Directly reference the Variable Block variable for 
read operations.

Constant propagation  — Blocks that compute a constant are eliminated and the 
constant value is used directly.

5.5 Introduction to Procedural Code

Procedural code is the generated code for only the Procedure SuperBlocks within 
a model. The code is typically used for two purposes: 1) to subsequently treat the 
generated code as a module that is plugged into a much larger code stream; 2) the 
first step toward linking generated code back into the SystemBuild Simulator to 
improve its performance as a UserCode Block.
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5.6 Sample Generated Code

The following section contains sample generated code. The code was generated 
with maximal vectorization and the no-restart optimization. Examples have been 
edited to eliminate the scheduler and other code not relevant for this example. 
Example 5-1 shows sample C code and Example 5-2 shows sample Ada code.

5.6.1 Sample C Code

Example 5-1 SAMPLE_MODEL.c

/****************************************************************************
| AutoCode/C (TM) Code Generator V7.X |
| WIND RIVER SYSTEMS INC., SUNNYVALE, CALIFORNIA |
*****************************************************************************
rtf filename : SAMPLE_MODEL.rtf
Filename : SAMPLE_MODEL.c
Dac filename : c_sim.dac
Generated on : Mon Mar 17 18:26:36 2000
Dac file created on : Thu Mar 6 12:09:32 2000
--
-- Number of External Inputs : 4
-- Number of External Outputs: 8
--
-- Scheduler Frequency: 10.0
--
-- SUBSYSTEM FREQUENCY TIME_SKEW OUTPUT_TIME TASK_TYPE
-- --------- --------- --------- ----------- ---------
-- 1 10.0000 0.00000 0.00000 PERIODIC
*/

#include <stdio.h>
#include <math.h>
#include "sa_sys.h"
#include "sa_defn.h"
#include "sa_types.h"
#include "sa_math.h"
#include "sa_user.h"
#include "sa_utils.h"
#include "sa_time.h"
#include "sa_fuzzy.h"

/******* System Ext I/O type declarations. *******/
struct _Subsys_1_out {

RT_FLOAT limited_values_1[4];
RT_FLOAT limited_values_1_1[4];

};

struct _Sys_ExtIn {
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RT_FLOAT SAMPLE_MODEL_1[4];
};

/******* System Ext I/O type definitions. *******/
struct _Subsys_1_out subsys_1_out = {{-EPSILON, -EPSILON, -EPSILON, -EPSILON},

{-EPSILON, -EPSILON, -EPSILON, -EPSILON}};
struct _Sys_ExtIn sys_extin;

/******** Procedures’ declarations ********/

/******* Procedure: value_added *******/

/***** Inputs type declaration. *****/
struct _value_added_u {

RT_FLOAT gainfactor_1[4];
};

/***** Outputs type declaration. *****/
struct _value_added_y {

RT_FLOAT limited_values_1[4];
};

/***** Info type declaration. *****/

struct _value_added_info {
RT_INTEGER iinfo[5];
RT_FLOAT RP[16];

};

/******** Procedures’ definitions ********/

/******* Procedure: value_added *******/

void value_added(U, Y, I)
struct _value_added_u *U;
struct _value_added_y *Y;
struct _value_added_info *I;

{
RT_INTEGER *iinfo = &I->iinfo[0];

/***** Parameters. *****/
RT_FLOAT *R_P = &I->RP[0];

/***** Algorithmic Local Variables. *****/
RT_INTEGER ilower;
RT_INTEGER iupper;
RT_FLOAT uval;
RT_INTEGER i;
RT_INTEGER k;
RT_FLOAT alpha;
103



MATRIXX 7.0
AutoCode User’s Guide
/***** Output Update. *****/
/* ---------------------------- Linear Interp */
/* {value_added..2} */
for (i=1; i<=4; i++) {

if (U->gainfactor_1[-1+i] < R_P[-2+2*i]) {
ilower = 1;
iupper = 0;

}
else if (U->gainfactor_1[-1+i] >= R_P[-1+2*i]) {

ilower = 0;
iupper = 1;

}
else {

ilower = (RT_INTEGER)((U->gainfactor_1[-1+i] - R_P[-2+2*i])/(R_P[
-1+2*i] - R_P[-2+2*i]));

iupper = ilower + 1;
}
alpha = (U->gainfactor_1[-1+i] - R_P[-2+ilower+2*i])/(R_P[-2+iupper+2*
i] - R_P[-2+ilower+2*i]);
Y->limited_values_1[-1+i] = (1.0 - alpha)*R_P[6+ilower+2*i] + alpha*
R_P[6+iupper+2*i];

}

iinfo[1] = 0;

EXEC_ERROR: return;
}

/******** Tasks declarations ********/

/******** Tasks code ********/

/******* Subsystem 1 *******/

void subsys_1(U, Y)
struct _Sys_ExtIn *U;
struct _Subsys_1_out *Y;

{
static RT_INTEGER iinfo[4] = {0, 1, 1, 1};

/***** Parameters. *****/
static RT_FLOAT R_P[8] = {4.3, 5.2, 3.5, 2.3, -4.3, -5.2, -3.5, -2.3};

/***** Local Block Outputs. *****/

RT_FLOAT gainfactor_1[4];
RT_FLOAT inverse_factor_1[4];

/***** Algorithmic Local Variables. *****/

RT_INTEGER i;
static struct _value_added_u value_added_4_u;
static struct _value_added_y value_added_4_y;
static struct _value_added_info value_added_4_i = {{0, 1, 1, 1, 1},
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{-10.5, 20.5, -10.5, 20.5, -10.5, 20.5, -10.5, 20.5, -1.5, 1.5, -1.5,
1.5, -1.5, 1.5, -1.5, 1.5}};

static struct _value_added_u value_added_14_u;
static struct _value_added_y value_added_14_y;
static struct _value_added_info value_added_14_i = {{0, 1, 1, 1, 1},

{-10.5, 20.5, -10.5, 20.5, -10.5, 20.5, -10.5, 20.5, -1.5, 1.5, -1.5,
1.5, -1.5, 1.5, -1.5, 1.5}};

/***** Output Update. *****/
/* ---------------------------- Gain Block */
/* {SAMPLE_MODEL.gf1.1} */
for (i=1; i<=4; i++) {

gainfactor_1[-1+i] = R_P[-1+i]*U->SAMPLE_MODEL_1[-1+i];
}

/* ---------------------------- Procedure SuperBlock */
/* {value_added.4} */
{

RT_INTEGER k = 0;
for( k=0;k<4;k++ ) {

value_added_4_u.gainfactor_1[k] = gainfactor_1[k];
}

}
value_added(&value_added_4_u, &value_added_4_y, &value_added_4_i);
{

RT_INTEGER k = 0;
for( k=0;k<4;k++ ) {

Y->limited_values_1[k] = value_added_4_y.limited_values_1[k];
}

}
iinfo[0] = value_added_4_i.iinfo[0];
if( iinfo[0] ! = 0 ) {

value_added_4_i.iinfo[0] = 0; goto EXEC_ERROR;
}
/* ---------------------------- Gain Block */
/* {SAMPLE_MODEL.gf2.2} */
for (i=1; i<=4; i++) {

inverse_factor_1[-1+i] = R_P[3+i]*U->SAMPLE_MODEL_1[-1+i];
}
/* ---------------------------- Procedure SuperBlock */
/* {value_added.14} */
{

RT_INTEGER k = 0;
for( k=0;k<4;k++ ) {

value_added_14_u.gainfactor_1[k] = inverse_factor_1[k];
}

}
value_added(&value_added_14_u, &value_added_14_y, &value_added_14_i);
{

RT_INTEGER k = 0;
for( k=0;k<4;k++ ) {

Y->limited_values_1_1[k] = value_added_14_y.limited_values_1[k];
}

}
iinfo[0] = value_added_14_i.iinfo[0];
if( iinfo[0] ! = 0 ) {
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value_added_14_i.iinfo[0] = 0; goto EXEC_ERROR;
}

if(iinfo[1]) {
SUBSYS_INIT[1] = FALSE;
iinfo[1] = 0;

}
return;

EXEC_ERROR: ERROR_FLAG[1] = iinfo[0];
iinfo[0]=0;

}

5.6.2 Sample Ada Code

Example 5-2 SAMPLE_MODEL.a

-------------------------------------------------------------------------------
-- AutoCode/Ada (TM) Code Generator V7.X -
-- WIND RIVER SYSTEMS INC., SUNNYVALE, CALIFORNIA -
-------------------------------------------------------------------------------
-- rtf filename : SAMPLE_MODEL.rtf
-- Filename : SAMPLE_MODEL.a
-- Dac filename : ada_rt.dac
-- Generated on : Mon Mar 17 18:27:44 2000
-- Dac file created on : Mon Mar 10 17:03:32 2000
--
-- Number of External Inputs : 4
-- Number of External Outputs: 8
--
-- Scheduler Frequency: 10.0
--
-- SUBSYSTEM FREQUENCY TIME_SKEW OUTPUT_TIME TASK_TYPE
-- --------- --------- --------- ----------- ---------
-- 1 10.0000 0.00000 0.00000 PERIODIC
--------------------------------------------------------------------------

----------------------
--- System Data ---
----------------------
with SYSTEM;
with UNCHECKED_CONVERSION;
with SA_TYPES; use SA_TYPES;
with SA_DEFN; use SA_DEFN;
with SA_TIME; use SA_TIME;
package SYSTEM_DATA is

NUMIN : constant RT_INTEGER := 4;
NUMOUT : constant RT_INTEGER := 8;
ExtIn : RT_FLOAT_AY(0..NUMIN);
ExtOut : RT_FLOAT_AY(0..NUMOUT) := (others => -EPSILON);
SUBSYS_PREINIT : RT_BOOLEAN_AY(0..NTASKS);

-------- System Ext I/O type declarations. --------
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type Subsys_1_out_t is record
limited_values_1 : RT_FLOAT_AY(0..3);
limited_values_1_1 : RT_FLOAT_AY(0..3);

end record;

type Sys_ExtIn_t is record
SAMPLE_MODEL_1 : RT_FLOAT_AY(0..3);

end record;

-------- System Ext I/O type definitions. --------
subsys_1_out : Subsys_1_out_t := ((-EPSILON, -EPSILON, -EPSILON, -EPSILON),

(-EPSILON, -EPSILON, -EPSILON, -EPSILON));
sys_extin : Sys_ExtIn_t;

end SYSTEM_DATA;

-------- Procedures package declarations --------
with SYSTEM;
with UNCHECKED_CONVERSION;
with SA_TYPES; use SA_TYPES;
with SYSTEM_DATA; use SYSTEM_DATA;
package value_added_pkg is

------ Inputs type declaration. ------
type value_added_u_t is record

gainfactor_1 : RT_FLOAT_AY(0..3);
end record;

------ Outputs type declaration. ------
type value_added_y_t is record

limited_values_1 : RT_FLOAT_AY(0..3);
end record;

------ Info type declaration. ------
type value_added_info_t is record

iinfo : RT_INTEGER_AY(0..4);
RP : RT_FLOAT_AY(0..15);

end record;

type value_added_u_t_P is access value_added_u_t;
function ptr_of is new UNCHECKED_CONVERSION

(SOURCE => SYSTEM.ADDRESS, TARGET => value_added_u_t_P);
type value_added_y_t_P is access value_added_y_t;
function ptr_of is new UNCHECKED_CONVERSION

(SOURCE => SYSTEM.ADDRESS, TARGET => value_added_y_t_P);
type value_added_info_t_P is access value_added_info_t;
function ptr_of is new UNCHECKED_CONVERSION

(SOURCE => SYSTEM.ADDRESS, TARGET => value_added_info_t_P);

-------- Procedure: value_added --------
procedure value_added(U : value_added_u_t_P;

Y : value_added_y_t_P;
I : value_added_info_t_P

);
end value_added_pkg;
107



MATRIXX 7.0
AutoCode User’s Guide
-------- Subsystems’ declarations --------
with SYSTEM;
with UNCHECKED_CONVERSION;
with SA_TYPES; use SA_TYPES;
with SYSTEM_DATA; use SYSTEM_DATA;
with value_added_pkg; use value_added_pkg;
package SUBSYSTEMS is

-------- Subsystem 1 Package --------
package subsys_1_pkg is

type Sys_ExtIn_t_P is access Sys_ExtIn_t;
function ptr_of is new UNCHECKED_CONVERSION

(SOURCE => SYSTEM.ADDRESS, TARGET => Sys_ExtIn_t_P);
type Subsys_1_out_t_P is access Subsys_1_out_t;
function ptr_of is new UNCHECKED_CONVERSION

(SOURCE => SYSTEM.ADDRESS, TARGET => Subsys_1_out_t_P);
U : Sys_ExtIn_t_P := ptr_of(sys_extin’address);
Y : Subsys_1_out_t_P := ptr_of(subsys_1_out’address);

procedure subsys_1;
end subsys_1_pkg;

end SUBSYSTEMS;

with SA_DEFN; use SA_DEFN;
with SA_TYPES; use SA_TYPES;
with SYSTEM_DATA; use SYSTEM_DATA;
package body SUBSYSTEMS is

package body subsys_1_pkg is separate;
end SUBSYSTEMS;

with SA_TYPES; use SA_TYPES;
with SYSTEM_DATA; use SYSTEM_DATA;
with SA_UTILITIES; use SA_UTILITIES;
separate (SUBSYSTEMS)
package body subsys_1_pkg is

SUBSYS_ID : constant := 1;

-------- Tasks code --------
iinfo : RT_INTEGER_AY(0..3) := (0, 1, 1, 1);

------ Parameters. ------
R_P : RT_FLOAT_AY(0..7) := (4.3, 5.2, 3.5, 2.3, -4.3, -5.2, -3.5, -2.3);
value_added_4_u : value_added_u_t;
value_added_4_y : value_added_y_t;
value_added_4_i : value_added_info_t := ((0, 1, 1, 1, 1), (-10.5, 20.5,

-10.5, 20.5, -10.5, 20.5, -10.5, 20.5, -1.5, 1.5, -1.5, 1.5, -1.5, 1.5,
-1.5, 1.5));

value_added_14_u : value_added_u_t;
value_added_14_y : value_added_y_t;
value_added_14_i : value_added_info_t := ((0, 1, 1, 1, 1), (-10.5, 20.5,

-10.5, 20.5, -10.5, 20.5, -10.5, 20.5, -1.5, 1.5, -1.5, 1.5, -1.5, 1.5,
-1.5, 1.5));

procedure subsys_1 is
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------ Local Block Outputs. ------
gainfactor_1 : RT_FLOAT_AY(0..3);
inverse_factor_1 : RT_FLOAT_AY(0..3);

------ Algorithmic Local Variables. ------
i_2 : RT_INTEGER;

begin
------ Output Update. ------
-- ---------------------------- Gain Block --
-- {SAMPLE_MODEL.gf1.1} --
for i_2 in RT_INTEGER range 1..4 loop

gainfactor_1(-1+i_2) := R_P(-1+i_2)*U.SAMPLE_MODEL_1(-1+i_2);
end loop;
-- ---------------------------- Procedure Super Block --
-- {value_added.4} --
value_added_4_u.gainfactor_1(0..3) := gainfactor_1(0..3);
value_added(ptr_of(value_added_4_u’address), ptr_of(

value_added_4_y’address), ptr_of(value_added_4_i’address));
Y.limited_values_1(0..3) := value_added_4_y.limited_values_1(0..3);
iinfo(0) := value_added_4_i.iinfo(0);
if iinfo(0) /= 0 then

value_added_4_i.iinfo(0) := 0; raise EXEC_ERROR;
end if;
-- ---------------------------- Gain Block --
-- {SAMPLE_MODEL.gf2.2} --
for i_2 in RT_INTEGER range 1..4 loop

inverse_factor_1(-1+i_2) := R_P(3+i_2)*U.SAMPLE_MODEL_1(-1+i_2);
end loop;
-- ---------------------------- Procedure Super Block --
-- {value_added.14} --
value_added_14_u.gainfactor_1(0..3) := inverse_factor_1(0..3);
value_added(ptr_of(value_added_14_u’address), ptr_of(

value_added_14_y’address), ptr_of(value_added_14_i’address));
Y.limited_values_1_1(0..3) := value_added_14_y.limited_values_1(0..3);
iinfo(0) := value_added_14_i.iinfo(0);
if iinfo(0) /= 0 then

value_added_14_i.iinfo(0) := 0; raise EXEC_ERROR;
end if;

if iinfo(1) > 0 then
iinfo(1) := 0;
SUBSYS_INIT(1) := false;

end if;

exception
when EXEC_ERROR =>

ERROR_FLAG(1) := iinfo(0); iinfo(0) := 0;
when NUMERIC_ERROR | CONSTRAINT_ERROR =>

ERROR_FLAG(1) := MATH_ERROR;
when OTHERS =>

ERROR_FLAG(1) := UNKNOWN_ERROR;
end subsys_1;

end subsys_1_pkg;

-------- Procedures package bodies --------
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with SA_TYPES; use SA_TYPES;
with SA_DEFN; use SA_DEFN;
with SYSTEM_DATA; use SYSTEM_DATA;
package body value_added_pkg is
-------- Procedure: value_added --------

procedure value_added(U : value_added_u_t_P;
Y : value_added_y_t_P;
I : value_added_info_t_P

) is
iinfo : RT_INTEGER_AY_5_P := ptr_of(I.iinfo’address);

------ Parameters. ------
R_P : RT_FLOAT_AY_16_P := ptr_of(I.RP’address);

------ Algorithmic Local Variables. ------
ilower : RT_INTEGER;
iupper : RT_INTEGER;
uval : RT_FLOAT;
i_1 : RT_INTEGER;
k_1 : RT_INTEGER;
alpha_1 : RT_FLOAT;

begin
------ Output Update. ------
-- ---------------------------- Linear Interp --
-- {value_added..2} --
for i_1 in RT_INTEGER range 1..4 loop

if U.gainfactor_1(-1+i_1) < R_P(-2+2*i_1) then
ilower := 1;
iupper := 0;

elsif U.gainfactor_1(-1+i_1) >= R_P(-1+2*i_1) then
ilower := 0;
iupper := 1;

else
ilower := ITRUNCATE((U.gainfactor_1(-1+i_1) - R_P(-2+2*i_1))/(R_P(

-1+2*i_1) - R_P(-2+2*i_1)));
iupper := ilower + 1;

end if;
alpha_1 := (U.gainfactor_1(-1+i_1) - R_P(-2+ilower+2*i_1))/(R_P(
-2+iupper+2*i_1) - R_P(-2+ilower+2*i_1));
Y.limited_values_1(-1+i_1) := (1.0 - alpha_1)*R_P(6+ilower+2*i_1) +
alpha_1*R_P(6+iupper+2*i_1);

end loop;

iinfo(1) := 0;

exception
when EXEC_ERROR =>

null;
when NUMERIC_ERROR | CONSTRAINT_ERROR =>

iinfo(0) := MATH_ERROR;
when OTHERS =>

iinfo(0) := UNKNOWN_ERROR;
end value_added;

end value_added_pkg;
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Continuous Systems
This chapter discusses the scheduler architecture as it relates to continuous code 
generation. Topics include fixed-step integrators, user-defined integrators, and 
how to generate code for continuous and hybrid systems.

6.1 Introduction

AutoCode supports code generation for continuous or hybrid (continuous and 
discrete) systems. The AutoCode scheduler supports continuous subsystems in 
the same manner in which it supports discrete subsystems. 

For continuous subsystems, at each minor cycle, the scheduler:

■ Schedules the continuous subsystem to run.

■ Posts continuous subsystem outputs.

■ Performs sample and hold on the continuous subsystem inputs.

■ Dispatches the continuous subsystem if ready.

■ Handles vectorization and optimization the same as for discrete systems.

An element of the scheduler is the Integrator (see Figure 6-1, p.112). It performs 
continuous, fixed-step integration of states and implicitly dispatches the 
continuous subsystem to perform the state and output updates. The integrator/
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continuous task pair is, by default, treated as the fastest task to be dispatched by 
the scheduler. 

6.2 Integrators

AutoCode supplies four fixed-step integrators:

■ First order Runge-Kutta (Euler)

■ Second order Runge-Kutta (Modified Euler)

■ Fourth order Runge-Kutta (Simpson’s 2nd rule)

■ Kutta-Merson

All of these integrators are located in the templates directory in the integrator 
template file language_intgr.tpl. There is also the capability to insert a user-
supplied integrator. Instructions for using your own integrator are provided in 
6.4.2 Xmath Command Options for Continuous Code Generation, p.114.

Figure 6-1 Scheduler Architecture

Integrator

Scheduler

Dispatcher

Discrete Tasks

Continuous
Task
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6.3 Limitations

When using continuous code generation, keep these limitations in mind:

■ Only fixed-step integrators are supported.

■ There is a slight mismatch of sim and continuous application outputs (i.e., the 
subsystem external inputs at time t and at time t+h, where h is the integration 
step, are assumed to be unchanged inside AutoCode integrator algorithms).

■ Continuous task states and derivatives are always of float data type.

■ Algebraic loops are not supported.

■ Only sim initialization mode 0 (initmode 0; see sim help for details) is 
supported.

■ You cannot generate procedures-only continuous code (procedure around a 
top-level continuous hierarchy).

6.4 How to Generate Code for Continuous or Hybrid Systems

As described in 2.1 How to Generate Real-Time Code, p.15, using AutoCode, you can 
generate C high-level language code from SystemBuild, the Xmath Commands 
window, or from the operating system prompt. The subsections that follow 
discuss each of these methods of code generation in terms of those options that 
are unique to generating code for continuous or hybrid systems.

You need both c_sim.tpl and c_intgr.tpl template files for C or ada_rt.tpl and 
ada_intgr.tpl for Ada (supplied in the templates directory). The c_sim.tpl and 
ada_rt.tpl template files include continuous subsystems-related parameters and 
the integrator template file. The integrator template file contains the code for the 
four integrators and a stubbed routine, usrintegrator, which provides the means 
for user-defined integrator implementation. 
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6.4.1 Generating Code for Continuous Systems from SystemBuild

To use AutoCode while inside SystemBuild, select Tools→AutoCode on the Catalog 
Browser to open the dialog. Instructions for using this dialog are in the MATRIXX 
Help.

Depending on the template file used, the code generated can be either C code or 
Ada code.

6.4.2 Xmath Command Options for Continuous Code Generation

The method for generating code for a continuous or hybrid system using the 
Xmath command line follows the procedure described in 2.1.2 Generating Code 
from Xmath, p.16. Two command line options that are unique to continuous code 
generation are ialg and csi.1 Although not for exclusive use in continuous code 
generation, the minsf option is useful for increasing the rate of a continuous task. 
See Table 6-1 for a summary of these options.

As indicated in Table 6-1, ialg specifies the selected integrator. The option takes an 
integer argument of 0, 1, 2, 3, or 4. The default integrator is the second order 
Runge-Kutta. 

1. For standalone AutoCode, results for generated code will not match sim unless the csi 
option is not zero. Typically, set csi to 0.01, the time vector for standalone sim. Then, results 
will match.

Table 6-1 Xmath Command Options for Continuous Code Generation

Option Description

ialg Specifies the integrator selection

0 = user-defined integrator

1 = first order Runge-Kutta integrator

2 = second order Runge-Kutta integrator (default)

3 = fourth order Runge-Kutta integrator

4 = Kutta-Merson integrator

csi Specifies the continuous task sample interval

minsf Specifies the minimum AutoCode scheduler frequency in seconds (0.0 
is the default)
114



6

6
Code Generation for Continuous Systems
When using 0 (user-defined integrator) for this command-line option, the 
integrator function should be implemented inside the function usrintegrator( ) 
located in c_intgr.tpl for C or ada_intgr.tpl for Ada. 

Because the integrator is invoked at each scheduler interval and the continuous 
task is dispatched via the integrator, an implicit frequency (that of the scheduler) 
is associated with the continuous task. If the system is all continuous, the 
scheduler cycle is 1 Hz. For hybrid systems, the implicit frequency of the 
continuous task is always the least common multiple of all of the frequencies of 
the discrete tasks. For continuous only modes, the implicit frequency of the single 
continuous defaults to 1 Hz. The command option csi specifies the sample 
interval for a continuous task. This option is useful for adjusting the rate of the 
continuous task. 

The command option minsf specifies the minimum AutoCode scheduler 
frequency. This option is useful for increasing the rate of a continuous task. The 
real-time scheduler frequency is set to the larger value of the frequency 
determined by the block diagram application and the value specified by the minsf 
option. The default value for this option is 0.0, which allows the application to set 
its own scheduler frequency. Deviation from this default should be approached 
with caution, as a consistent scheduler frequency should normally be based on a 
least common multiple of the application timing requirements.

For example, to generate code for a model with a continuous subsystem, using the 
fourth order Runge-Kutta integrator method, and minimum scheduler frequency 
of 300.0 Hz in file model.c, use the following Xmath command:

autocode, model="model", {ialg=3, minsf=300.0}

In this case, the autocode command automatically generates the file model.c in the 
directory from which Xmath was invoked.

6.4.3 OS Command Options for Continuous Code Generation

The method for generating code for a continuous or hybrid system using the 
operating system command line follows the procedure described in 
2.1.3 Generating Code from the Operating System, p.17. Two command options that 
are unique to continuous code generation are -i and -csi. Although not for 
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exclusive use in continuous code generation, the -minsf option may be useful for 
increasing the rate of a continuous task. Table 6-2 summarizes these options.

As indicated in Table 6-2, -i specifies the selected integrator. The option takes an 
integer argument of 0, 1, 2, 3, or 4. The default integrator is the second order 
Runge-Kutta. 

When using 0 (user-defined integrator) for this command option, the integrator 
function should be implemented inside the function usrintegrator( ) located in 
c_intgr.tpl for C or ada_intgr.tpl for Ada. 

Because the integrator is invoked at each scheduler interval and the continuous 
task is dispatched via the integrator, an implicit frequency (that of the scheduler) 
is associated with the continuous task. For hybrid systems, the implicit frequency 
of the continuous task is always the least common multiple of all the frequencies 
of the discrete tasks. The command option -csi specifies the sample interval for a 
continuous task.

The command option -minsf specifies the minimum AutoCode scheduler 
frequency. This option is useful for increasing the rate of a continuous task. The 
real-time scheduler frequency is set to the larger value of the frequency 
determined by the block diagram application and the value specified by the minsf 
option. The default value for this option is 0.0, which allows the application to set 
its own scheduler frequency. Deviation from this default should be approached 
with caution, as a consistent scheduler frequency should normally be based on a 
least common multiple of the application timing requirements.

Table 6-2 Operating System Command Options for Continuous Code Generation

Option Description

-i Specifies the integrator selection

0 = user-defined integrator

1 = first order Runge-Kutta integrator

2 = second order Runge-Kutta integrator (default)

3 = fourth order Runge-Kutta integrator

4 = Kutta-Merson integrator

-csi Specifies the continuous task sample interval

-minsf Specifies the minimum AutoCode scheduler frequency in seconds (0.0 
is the default)
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To generate code for a model with a continuous subsystem, using the fourth order 
Runge-Kutta integrator method, and minimum scheduler frequency of 300.0 Hz, 
use the operating system command shown in Example 6-1 (C) or Example 6-2 
(Ada):

Example 6-1 Sample Operating System Command for C

% autostar -l c -i 3 -minsf 300.0 -o model.c model.rtf

Example 6-2 Sample Operating System Command for Ada

% autostar -l a -i 3 -minsf 300.0 -o model.a model.rtf

6.5 Sample Generated C Code

The following example is a file that lists the generated model and default 
integrator (Runge-Kutta 2) code for the block diagram model located in the file 
mws_demo.dat in the classical_demo directory located in the SystemBuild demo 
distribution directory. The block diagram is shown in Figure 6-2. 

The sample generated code (Example 6-3) has been edited for brevity, showing 
only the most important features. 

As code can change slightly from one release to the next, please refer to the 
current example in your demo directory for an exact code listing.

NOTE:  If you need to review the steps required to create an executable, refer to 
2.5.1 Standalone Simulation, p.26.
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Example 6-3 File built_model.c

/****************************************************************
| AutoGen/C (TM) Code Generator V7.x |
| WIND RIVER SYSTEMS INC., SUNNYVALE, CALIFORNIA |
****************************************************************
Modelname : built_model
Filename : built_model.c
Generated on : Wed Aug 4 16:43:28 1999
Dac file created on : Tue Jul 27 20:48:17 1999
*/

#include <stdio.h>
#include "sa_intgr.h"
...
/*** System Data ***/

#define SCHEDULER_FREQ 300.0
#define NTASKS 1
#define NUMIN 0

Figure 6-2 Built_Model SuperBlock
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#define NUMOUT 1
#define IALG 2

enum TASK_STATE_TYPE { IDLE, RUNNING, BLOCKED, UNALLOCATED };

enum SUBSYSTEM_TYPE { CONTINUOUS, PERIODIC, ENABLED_PERIODIC,
TRIGGERED_ANT,TRIGGERED_ATR, TRIGGERED_SAF, NONE };

...
/******* Global declarations. *******/
...
/******* System Ext I/O structs. declarations.*******/
...
/******* System Ext I/O structs. definitions.*******/
...
/**Continuous Subsystem states and info structs. declarations.**/
struct _Subsys_1_states {

RT_FLOAT system_dynamics_S1;
RT_FLOAT system_dynamics_S2;
RT_FLOAT BUILT_MODEL_2_S1;
RT_FLOAT BUILT_MODEL_2_S2;
RT_FLOAT feedforward_compensator_S1;

};
struct _Subsys_1_info {

RT_INTEGER iinfo[5];
RT_FLOAT rinfo[5];

};

/***Continuous Subsystem states and info structs. definitions.***/struct
_Subsys_1_states subsys_1_states[2] = {0., 0., 0., 0., 0., 0., 0., 0.,

0., 0.};

struct _Subsys_1_info subsys_1_info = {0, 1, 1, 1, 0, 1., 0.};
...
/******* Task’s declarations. *******/

/******* (Continuous) Subsystem 1 *******/
extern void subsys_1();

/******* Task’s code. *******/

/******* (Continuous) Subsystem 1 *******/
void subsys_1(Y, S, I)

struct _Subsys_1_out *Y;
struct _Subsys_1_states *S;
struct _Subsys_1_info *I;

{
RT_INTEGER *iinfo = &I->iinfo[0];
RT_FLOAT *rinfo = &I->rinfo[0];
RT_INTEGER INIT = iinfo[1];
RT_INTEGER STATES = iinfo[2];
RT_INTEGER OUTPUTS = iinfo[3];
RT_INTEGER CALLER = iinfo[4];
const RT_DURATION TIME = rinfo[0];

/***** Current and Next States Pointers. *****/
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struct _Subsys_1_states *X = &S[0];
struct _Subsys_1_states *XD = &S[1];

/***** Parameters. *****/
...

/***** Local Block Outputs. *****/
...

if(OUTPUTS) { /* Output Update. */
/*---------------------------- Num - Den Coeffs. */
/* {BUILT_MODEL.system dynamics.4} */
Y->system_output = 0.5*X->system_dynamics_S1;
Y->system_output = Y->system_output + 1.5*X->system_dynamics_S2;
/*---------------------------- Nth Order Integrator */
/* {BUILT_MODEL..2} */
BUILT_MODEL_2_1 = 1.4*X->BUILT_MODEL_2_S1;
/*---------------------------- Step Function */
BUILT_MODEL_8_1= 1;
/*---------------------------- Quantization */
/* {BUILT_MODEL..10} */
BUILT_MODEL_10_1 = 0.7*ROUND(Y->system_output/0.7);
sgn = SGN(Y->system_output);
ushift = fabs(Y->system_output) + 0.35;
remain = fmod(ushift,0.7);
alpha = remain - (1.0 - RELTOL)*0.7;
if (alpha > 0.0) {

BUILT_MODEL_10_1 = BUILT_MODEL_10_1 + sgn*alpha/RELTOL;
}

...
}
if(STATES) { /* State Update. */

/*---------------------------- Num - Den Coeffs. */
/* {BUILT_MODEL.system dynamics.4} */
XD->system_dynamics_S1 = 0.0;
XD->system_dynamics_S2 = 0.0;
XD->system_dynamics_S1 = XD->system_dynamics_S1 - 20.1
*X->system_dynamics_S1;
XD->system_dynamics_S1 = XD->system_dynamics_S1 - 2.0
*X->system_dynamics_S2;
XD->system_dynamics_S2 = XD->system_dynamics_S2 +

X->system_dynamics_S1;
XD->system_dynamics_S1 = XD->system_dynamics_S1 +

2.0*BUILT_MODEL_2_1;
/*---------------------------- Nth Order Integrator */
/* {BUILT_MODEL..2} */
XD->BUILT_MODEL_2_S1 = X->BUILT_MODEL_2_S2;
XD->BUILT_MODEL_2_S2 = Actuator_Nonlinearity_1;

...
}

INIT = 0;
iinfo[1] = 0;
return;

ERROR: ERROR_FLAG[1] = iinfo[0];
iinfo[0]=0;

}
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/* The function rungekutta2 employs the second-order Runge-Kutta method with
Kutta's coefficients to integrate a system of n simultaneous first order
ordinary differential equations dxdt[j] = dx[j]/dt, (j=1,2,...,n), across one
step of length h in the independent variable t, subject to initial conditions
x[j], (j=1,2,...,n). Each dxdt[j], the derivative of x[j], must be computed
two times per integration step by calling the state derivatives and output
equations function (sybsys_1()). savex(j) is used to save the initial value
of x(j) and phi(j) is the increment function for the j(th) equation. As
written, n may be no larger than 5. (Modified Euler)
*/
void rungekutta2(n,x,dxdt,t,h)

RT_INTEGER n;
RT_FLOAT *x,*dxdt,t,h;

{
RT_FLOAT phi[5];
RT_FLOAT savex[5];
RT_INTEGER j, retval;
RT_FLOAT hh = t;

ss1_rinfo[0] = hh; ss1_rinfo[1] = 0.0;
ss1_iinfo[2]=1; ss1_iinfo[3]=1; ss1_iinfo[4]=8;
subsys_1(&subsys_1_out, subsys_1_states, &subsys_1_info);

for (j=0; j<n; j++) {
savex[j] = x[j];
phi[j] = dxdt[j];
x[j] = savex[j] + h*dxdt[j];

}
hh=t+h;

ss1_rinfo[0] = hh; ss1_rinfo[1] = 0.0;
ss1_iinfo[2]=1; ss1_iinfo[3]=1; ss1_iinfo[4]=0;
subsys_1(&subsys_1_out, subsys_1_states, &subsys_1_info);

for (j=0; j<n; j++) x[j] = savex[j] + (phi[j] + dxdt[j])*h/2.0;
}

/*---------------*
*-- SCHEDULER --*
*---------------*/

...
void Init_Scheduler()
{

...
}
void SCHEDULER()
{

register RT_INTEGER NTSK;
register RT_INTEGER J;
RT_INTEGER ITSK;
RT_INTEGER I;

TIME_COUNT = TIME_COUNT + 1;
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/*** System Input ***/
...
/*** Task Scheduling ***/

for( NTSK=NTASKS; NTSK>=1; NTSK-- ){

switch( TASK_STATE[NTSK] ){
case IDLE :

switch( TCB[NTSK].TASK_TYPE ){
case CONTINUOUS :
case PERIODIC :

if( TCB[NTSK].START == 0 ){
Queue_Task(NTSK);

Update_Outputs(NTSK);
TCB[NTSK].START =

TCB[NTSK].SCHEDULING_COUNT;
}else{

TCB[NTSK].START =
TCB[NTSK].START - 1;

}
break;

case ENABLED_PERIODIC :
...

}
break;

case RUNNING :
...
}

}

/*** System Output ***/
...
/*** Update elapsed time ***/

ELAPSED_TIME = ((RT_DURATION)TIME_COUNT)*SCHEDULER_INTERVAL;

/*** Task Input Sample and Hold ***/
...

/*** Signal End of Critical Section ***/
...

/*** Task Dispatching ***/

while( ITSK < CURRENT_PRIORITY && ITSK <= DISPATCH_COUNT ){
Disable;
if( DISPATCH[ITSK] ){

LEVEL++;
PRIORITY[LEVEL] = CURRENT_PRIORITY;
CURRENT_PRIORITY = ITSK;
DISPATCH[ITSK] = FALSE;
Enable;
switch (ITSK){
122



6

6
Code Generation for Continuous Systems
case 1:
subsys_1 (&subsys_1_out,

&subsys_1_states,
&subsys_1_info);

rungekutta2(5,
(RT_FLOAT *)(&subsys_1_states[0]),
(RT_FLOAT *)(&subsys_1_states[1]),
(RT_FLOAT)SUBSYS_TIME[1],
0.003);

break;

default : break;
}
...

}
..

}

6.6 Sample Generated Ada Code

The following example is a file that lists the generated model and default 
integrator (Runge-Kutta 2) code for the block diagram model located in the file 
mws_demo.dat in the classical_demo directory located in the SystemBuild demo 
distribution directory. The block diagram is shown in Figure 6-2, p.118. 

AutoCode automatically generates built_model.a in the directory from which 
Xmath was invoked. The sample generated code (Example 6-4) has been edited 
for brevity, showing only the most important features. 

As code can change slightly from one release to the next, be sure to refer to the 
current example in your demo directory for an exact code listing.

Example 6-4 File built_model.a

-----------------------------------------------------------------------
-- AutoCode/Ada (TM) Code Generator V7.x
-- WIND RIVER SYSTEMS INC., SUNNYVALE, CALIFORNIA
-------------------------------------------------------------------------
Modelname : built_model
-- Filename : built_model.ada
-- Dac filename : ada_rt.dac

NOTE:  If you need to review the steps required to create an executable, refer to 
2.5.1 Standalone Simulation, p.26.
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-- Generated on : Wed Dec 1 20:59:39 1999
-- Dac file created on : Wed Dec 1 18:01:31 1999
-----------------------------------------------------------------------...
package SUBSYSTEMS is

-------- (Continuous) Subsystem 1 Package --------
package subsys_1_pkg is

...

procedure subsys_1;

procedure rungekutta2(n :in RT_INTEGER;
x :in out RT_FLOAT_AY_5_P;
dxdt :RT_FLOAT_AY_5_P;
t :in RT_FLOAT;
h :in RT_FLOAT);

end subsys_1_pkg;

end SUBSYSTEMS;

...
package body Subsys_1_pkg is

SUBSYS_ID : constant := 1;

-------- Task's code. --------
...
procedure subsys_1 is

...
------ Local Block Outputs. ------
...
------ Algorithmic Local Variables. ------
...

begin
if iinfo(1) > 0 then

INIT := TRUE; iinfo(1) := 0;
end if;
if iinfo(2) > 0 then

STATES := TRUE; iinfo(2) := 0;
end if;
if iinfo(3) > 0 then

OUTPUTS := TRUE; iinfo(3) := 0;
end if;

------ Output Update. ------

if OUTPUTS then
-- ---------------------------- Num - Den Coeffs. --
-- {BUILT_MODEL.system dynamics.4} --
Y.system_output := 0.5*X.system_dynamics_S1 + 1.5*

X.system_dynamics_S2;

-- ---------------------------- Nth Order Integrator --
-- {BUILT_MODEL..2} --
BUILT_MODEL_2_1 := 1.4*X.BUILT_MODEL_2_S1;
-- ---------------------------- Step Function --
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-- {BUILT_MODEL..8} --
BUILT_MODEL_2_1=1;

-- ---------------------------- Quantization --
-- {BUILT_MODEL..10} --
BUILT_MODEL_10_1 := 0.7*ROUND(Y.system_output/0.7);
sgn := SGN(Y.system_output);
ushift := ABS(Y.system_output) + 0.35;
remain := ((ushift)MOD(0.7));
alpha_1 := remain - (1.0 - RELTOL)*0.7;
if alpha_1 > 0.0 then

BUILT_MODEL_10_1 := BUILT_MODEL_10_1 + sgn*alpha_1/RELTOL;
end if;
...

end if;

------ State Update. ------
if STATES then

-- ---------------------------- Num - Den Coeffs. --
-- {BUILT_MODEL.system dynamics.4} --
XD.system_dynamics_S1 := 0.0;
XD.system_dynamics_S2 := 0.0;
XD.system_dynamics_S1 := XD.system_dynamics_S1 - 20.1*

X.system_dynamics_S1;
XD.system_dynamics_S1 := XD.system_dynamics_S1 - 2.0*

X.system_dynamics_S2;
XD.system_dynamics_S2 := XD.system_dynamics_S2 +

X.system_dynamics_S1;
XD.system_dynamics_S1 := XD.system_dynamics_S1 + 2.0*

BUILT_MODEL_2_1;
-- ---------------------------- Nth Order Integrator --
-- {BUILT_MODEL..2} --
XD.BUILT_MODEL_2_S1 := X.BUILT_MODEL_2_S2;
XD.BUILT_MODEL_2_S2 := Actuator_Nonlinearity_1;
...

end if;

INIT := FALSE;
exception

when EXEC_ERROR =>
ERROR_FLAG(1) := iinfo(0); iinfo(0) := 0;

when NUMERIC_ERROR | CONSTRAINT_ERROR =>
ERROR_FLAG(1) := MATH_ERROR;

when OTHERS =>
ERROR_FLAG(1) := UNKNOWN_ERROR;

end subsys_1;

-- The function rungekutta2 employs the second-order Runge-Kutta method
-- with Kutta's coefficients to integrate a system of n simultaneous
-- first order ordinary differential equations dxdt(j) = dx(j)/dt,
-- (j=1,2,...,n), across one step of length h in the independent
-- variable t, subject to initial conditions x(j), (j:=1,2,...,n). Each
-- dxdt(j), the derivative of x(j), must be computed two times per
-- integration step by calling the state derivatives and output
-- equations function (subsys_1()). savex(j) is used to save the
-- initial value of x(j) and phi(j) is the increment function for the
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-- j(th) equation. As written, n may be no larger than 5.
-- (Modified Euler)
procedure rungekutta2(n :in RT_INTEGER;

x :in out RT_FLOAT_AY_5_P;
dxdt :in RT_FLOAT_AY_5_P;
t :in RT_FLOAT;
h :in RT_FLOAT) is

phi : RT_FLOAT_AY(0..5);
savex : RT_FLOAT_AY(0..5);
j : RT_INTEGER;
retval : RT_INTEGER;
hh : RT_FLOAT := t;

begin

I.rinfo(0) := hh; -- TIME
I.rinfo(1) := h; -- SAMPLE INTERVAL
I.rinfo(2) := 0.0; -- SKEW
I.rinfo(3) := 0.0; -- START TIME
I.iinfo(2):=1; I.iinfo(3):=1; I.iinfo(4):=1;
subsys_1;

for j in 0..n loop
savex(j) := x(j);
phi(j) := dxdt(j);
x(j) := savex(j) + h*dxdt(j);

end loop;
hh:=t+h;

I.rinfo(0) := hh; -- TIME
I.rinfo(1) := h; -- SAMPLE INTERVAL
I.rinfo(2) := 0.0; -- SKEW
I.rinfo(3) := 0.0; -- START TIME
I.iinfo(2):=1; I.iinfo(3):=1; I.iinfo(4):=1;
subsys_1;

for j in 0..n -l loop
x(j) := savex(j) + (phi(j) + dxdt(j))*h/2.0;

end loop;
end rungekutta2;
...

end Subsys_1_pkg;
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6.7 Hints

When dealing with a system containing a single continuous subsystem, 
AutoCode generates a SCHEDULER_FREQ of 1.0 (that is, the inherent rate of the 
continuous subsystem is that of the scheduler, 1.0). Additionally, when dealing 
with a hybrid system, AutoCode, by default, treats the continuous subsystem as 
the fastest task to be dispatched (again, the inherent rate of the continuous 
subsystem is that of the scheduler). This value might not reflect the true dynamics 
of the system. In order to obtain an approximate rate for the continuous task, you 
need to use sim iteratively (or lin for predominantly linear systems) to arrive at an 
optimal step size for the integration algorithm, and thus, an approximate 
sampling interval for the continuous task. For a continuous system (represented 
by differential equations), the step size is related to its eigenvalues (the 
eigenvalues vary in time for nonlinear systems). Therefore, AutoCode cannot 
calculate the average step size.

Typically, a continuous system needs to be sampled 5 to 15 times faster than the 
smallest time constant in the system (depending on the order of the integration 
algorithm). This time constant is the reciprocal of the largest eigenvalue in the 
system and this information can be obtained with lin.
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Using VxWorks with AutoCode
This chapter describes the VxWorks AutoCode C template package with 
MATRIXX

® release 7.X and Tornado 2. This includes a description of generating 
the real-time application source code such as super_cruise.c using the VxWorks 
template. It also provides a way to run and test this application code using a 
sample application driver program. For both of the examples in this chapter, you 
need to have Tornado 2 installed on your host and a target running VxWorks 5.4. 
Currently, we support the following target CPU types:

■ SIMNT - VxWorks simulator (see Increasing SIMNT Memory Size)

■ PPC604 - single processor (see For PPC604 targets)

■ I80486 - single processor (see For I80486 targets)

7.1 Template Features

The VxWorks template provides the following features:

■ Scheduler and task overflow limit have been implemented. If the scheduler or 
any task is unable to complete its execution within the set number of clock 
cycles, then it is allowed to take a few more clock cycles to finish. You can 
change this value in the usrData.h file. If this limit is exceeded, then the 
application reports an error and terminates.

NOTE:  Other x86 CPU types and their corresponding BSPs could easily be used.
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■ The stop and restart capability is fully functional.

■ Supports BetterState related code generation.

■ The gencode.bat file can generate application code for any model. For 
example, typing gencode lander at the appropriate command prompt, 
generates code for the model lander. Typing gencode only, generates the 
default Supercruise code.

■ Similarly, makefile.cmdline can build the downloadable for any model. For 
example, typing make -f makefile.cmdline PROJ=lander starts the build for 
the lander model on the default I80486 CPU type.

■ The real-time application shuts down whenever an AutoCode related error is 
encountered.

■ The super_cruise.c file is no longer instrumented with printf statements.

■ The AutoCode generated code uses semaphores instead of message queues as 
the IPC mechanism. This improves the run-time performance of the real-time 
application.

■ The application can take inputs from an Xmath format file and run until all 
inputs are processed. Upon shut-down, an output file is generated containing 
the computed results of the input data.

7.2 Generating Code

In order to use the VxWorks template, you need the following files:

vxworks.tpl VxWorks template source file

vxworks.dac Compiled template file - needed if vxworks.tpl can’t be 
compiled

gencode.bat Batch file for generating the application code

appl .rtf A real-time file of a SystemBuild model, for example, 
super_cruise.rtf.

appl .data An Xmath formatted input data file, for example, 
super_cruise.data
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 To generate the code for the given model file, do the following:

1. Open a Command Prompt window.

2. Copy all provided files to your working directory.

3. Change the variables ISIHOME and MATRIXXVER in the gencode.bat file to 
point to your MATRIXX installation directory and release, respectively.

4. Run the batch file gencode.bat from the command prompt.

This generates the following files in your working directory:

7.3 Code Testing Method

In order to test this code, make sure that you have copied the following files to 
your working directory:

super_cruise.c The real-time application source code

vxworks.dac Compiled template file - needed if vxworks.tpl 
cannot be compiled

gencode.bat Batch file for generating the application code

appl.rtf A real-time file of a SystemBuild model, for example, 
super_cruise.rtf

appl.data An Xmath formatted input data file, for example, 
super_cruise.data

makefile.cmdline Sample makefile to build a downloadable object.

usrAppInit.c Sample driver program.

auxClk.c File containing aux clock related functions file.

sa_utils.c Utility functions that super_cruise.c calls.

super_cruise.c Application file generated by you.

sa_defn.h,
sa_utils.h

Include files used by the application.

appl.h Include file for the application source code.
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The inputs to the application can now be read from an input file. The computed 
results will be saved in an output file. This I/O capability is available if the 
symbol FILE_IO is defined. Without this, the code will work like before where 
you must initialize the hard-coded inputs in the sa_utils.c file with appropriate 
values according to your model needs. If you are running the super_cruise model, 
then please take a look at the SA_External_Input( ) function in the sa_utils.c file 
and follow the instructions given there.

This application is by default built for an 80486 target PC. If your target differs 
from this, please follow the instructions in the VxWorks Programmer's Guide 
(Chapter: Configuration and Build; Section: Defining the CPU Type) for making 
changes to the given makefile. Also, follow the Tornado User's Guide (Chapter: 
Projects; Section: Building a Downloadable Application) if you want to use the 
IDE for building the downloadable image. The makefile supplied is for use at the 
Command Prompt, and not in a Tornado IDE project.

If you are using the aux clock, then you need to custom-build your VxWorks 
image and boot your target with this. Details for building a custom image can be 
found in the Tornado User’s Guide (Chapter: Projects; Section: Creating a Custom 
VxWorks Image). Changes needed are as follows:

For PPC604 targets

1. Increase AUX_CLK_RATE_MAX from 5000 to 50000.

2. Compile with the -O2 or -O3 optimization level.

For I80486 targets

Compile with the -O2 or -O3 optimization level.

If you are building VxWorks manually, then edit mv2600.h in your ppc604 BSP 
directory to change the value of AUX_CLK_RATE_MAX. Then add the following 
line in the makefile found in the same location (or in the pc486 BSP directory): 

ADDED_CFLAGS = -O2

Do a make clean followed by make to rebuild VxWorks.

usrData.h Include file with settings you can change.

super_cruise.data Input data file.
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Follow these steps for building and loading the test case, assuming you have 
installed Tornado in c:\Tornado and are in your working directory. We also 
assume that you have your target hooked up to your host through one of the 
methods mentioned in the Tornado User’s Guide. 

From a Command Prompt:

1. Enter the following to activate all Tornado-related environment variables:

c:\Tornado\host\x86-win32\bin\torvars.exe

2. Edit makefile.cmdline to change:

CPU to your default target type and EXTRA_INCLUDE and VPATH to point 
to the correct drive for the Wind River distribution of AutoCode.

Also, note the usage of EXTRA_DEFINE which sets the RS_VXWORKS 
symbol. You must set this symbol, the extra include path, and the macro 
VPATH if you are using the Tornado project facility for make.

Add -DVX_FP to the list of EXTRA_DEFINE if your target supports a 
floating-point coprocessor. For example:

EXTRA_DEFINE=-DRS_VXWORKS -DVX_FP

The floating-point define is not needed when using the VxWorks simulator.

Remove -DUSE_AUX_CLK if you want your application to free-run. By 
default the makefile has this symbol defined which implies that your 
application will be driven by aux clock interrupts. Attempting to use the aux 
clock with a SIMNT target will result in a run-time error.

Add -DFILE_IO if you want the application to read its input from the 
super_cruise.data file. By default, this symbol is not defined.

3. If you are using the aux clock, then edit the usrData.h file to make changes to 
the clock frequency (CLK_FREQ). See Usage Notes for the appropriate 
values. You can also change the value of OVERFLOW_LIMIT to a different 
number.

4. Initialize the input values in the SA_External_Input( ) function in the sa_utils.c 
file if not using FILE_IO. Otherwise, edit the usrData.h file and change the 
value of DATA_FILE_LOCATION to point to the directory where you have 
stored super_cruise.data.

5. Save all files that have been edited.
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6. Issue the command:

make -f makefile.cmdline CPU= CPU_TYPE

For example: 

make -f makefile.cmdline CPU=PPC604

This compiles all source files and produces a linked object called super_cruise. 
You can ignore the warnings given by the compiler.

Examples of CPU_TYPE are explained in the makefile. If none is given, the 
default I80486 is used.

7. Start a WindShell in the Tornado IDE. Make sure that you are in the current 
working directory in this shell and that an appropriate target server is 
running. For example:

cd "d:\users\myname\vxworks\projects\super_cruise"

8. Issue the following command to download the linked object super_cruise to 
your target:

ld 1,0, "super_cruise"

9. Spawn a task to execute the real-time application:

sp usrAppInit

10. If you have defined FILE_IO, then you will be prompted to enter the input 
and output file names. Enter super_cruise.data as the input file and a similar 
name for the output file name at the target console or the hyperterminal.

7.4 Increasing SIMNT Memory Size

If the VxWorks built-in simulator runs out of memory, follow this procedure to 
increase the available memory:

1. Open a Command Prompt window and change to the following directory:

C:\Tornado\host\x86-win32\bin

NOTE:  You might want to experiment with the code in usrAppInit.c.
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2. Run torvars from the command prompt to set up the environment.

3. Start the VxWorks simulator with increased memory (for example, 
approximately 3 MB):

C:\Tornado\target\config\simpc\vxWorks.exe -r3000000

4. Configure and launch a target server from the Tornado 2 toolbar
-or-
Configure and launch a target server from the Command Prompt window by 
changing directory to:

C:\Tornado\target\host\x86-win32\bin

and then entering this command:

set WIND_UID=0

followed by:

tgtsvr.exe -V -B wdbpipe -R C:/TEMP/tsfs -RW -n vxsim -c C:/Tornado/
target/config/simpc/vxWorks yourNode

 where yourNode is the name of your machine.

5. Launch a WindShell and communicate with the target as usual. You can 
launch the WindShell from the Tornado 2 toolbar or from the Command
Prompt:

windsh.exe vxsim@ yourNode

NOTE:     There is no space between -r and the memory size.

! WARNING:  When a simulator target is booted, a number of tasks have a nonzero 
Errno. These errors occur before super_cruise is loaded, but cause no harm.
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7.5 Usage Notes

When you are using the VxWorks AutoCode C template package with 
MATRIXX 7.X and Tornado 2, the following usage notes may be of interest:

■ The code in usrAppInit.c is for demonstration and test purposes only.

■ Recommended values to use for the aux clock frequency are:

■ The total expected printed output of the super_cruise application driven by 
the aux clock and without any interference from run-time print messages is:

SA_Background: Starting aux clock INT...
Enter Xmath {matrixx, ASCII} formatted input file name:

Enter output file name:

If, at any time the scheduler or a subsystem task exceeds the number of clock 
cycles set by OVERFLOW_LIMIT in usrData.h, while trying to complete its 
execution, the system reports this situation and terminates by deleting all the 
tasks and cleaning up after them.

■ The aux clock used by the PC486 BSP is the CMOS RTC. It is limited to using 
one of only 13 clock speeds which are powers of two and in the range 
[2,8192]. By contrast, the PPC604 aux clock value is limited to the range of 
[40,50000], but not constrained to be a power of two. Setting the aux clock 
speed to any frequency outside of these ranges and constraints results in the 
failure of the sysAuxClkRateSet( ) call and the application will not be able to 
run.

All tasks will just be in a pending state. At this point, you will need to issue a 
progStop command to get out of such a situation.

■ You can use WindView to observe the application graphically and confirm its 
correctness as far as scheduling goes. However, it is not advisable to interfere 
with the target in any way (for example, typing a command at a WindShell, 
using WindView, using the browser’s spy chart) when the application is 
running at a significantly high clock speed. The program can only tolerate 
such activities (without causing any scheduler or task overruns) at low clock 
speeds. For information about WindView, see the WindView User’s Guide.

For I80486 targets  Values between 2 and 1024 Hz.

For PPC604 targets Values between 40 and 10000 Hz.

For SIMNT Not applicable.
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■ The browser’s spy chart and WindView (with time stamping) both use the 
aux clock - hence they will interfere with the application if either of them is 
used while the application is running. However, we have not observed any 
significant interference.

■ The application free-runs when the aux clock is not used. This means that its 
period is equal to the speed of the slowest task in the system. The SIMNT 
target supports only the free-run mode of operation. If you attempt to use the 
aux clock with the SIMNT target, you will get an error message.

■ The include file sa_defn.h has been merged into the standard AutoCode 7.X 
distribution.

■ MATRIXX
® 7.X support files for Tornado 2 are included in the AutoCode 7.X 

distribution in the %MATRIXX%\case\acc\templates\apps\vxworks 
directory. This includes the following files:

appl.h
auxclk.c
gencode.bat
makefile.cmdline
readme.txt
sa_defn.h
sa_utils.c
sa_utils.h
super_cruise.c
super_cruise.data
super_cruise.rtf
usrappinit.c
usrdata.h
vxworks.dac
vxworks.tpl

! WARNING:  When using FILE_IO, it is essential that you spawn usrAppInit rather 
than just invoke usrAppInit. By spawning it, all I/O gets redirected to the target’s 
console or the hyperterminal. Hence, anything that you enter from the keyboard 
gets echoed back on to the screen. If you don’t spawn, then I/O is done at the 
WindShell, where the things that you type are not echoed.

NOTE:  The above files, including possible updates, may be available on the Wind 
River FTP site in the form of a .zip file.
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Customizing AutoCode and

Generated Code
This chapter provides advanced methods for customizing AutoCode and its 
output real-time code using AutoCode configuration options, templates, 
BlockScript, and %variables.

8.1 Introduction

You can customize the AutoCode process and the generated output code to suit 
your specific needs. The different ways you can do this are listed below and 
described in detail in the sections that follow:

■ AutoCode configuration options allow you to specify indentation, coding of 
significant digits for numeric literals, minimum scheduler frequency, and 
output file name as described in AutoCode Configuration Options, p.140.

■ Templates allow you to modify the overall architecture of generated code, 
customize the scheduler, modify data structures and external I/O calls, add 
user codes described in Templates, p.140.

■ BlockScript enables you to create your custom block algorithm and generate it 
in-line in the output source files described in BlockScript Block, p.140.

■ Data parameterization (%variable) allows the numeric literals in the block 
algorithms to be represented by named variables (%variables) as described in 
Data Parameterization, p.142.
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■ Using existing code libraries and interfaces to hardware are accomplished by 
using a UserCode Block as described on p.143 or Macro Procedure as 
described on p.143.

8.2 AutoCode Configuration Options

You can specify the AutoCode configuration from a SystemBuild form (see 
Chapter 2), by using Xmath Commands window options or by using operating 
system command options. For information on Xmath Commands window or 
operating system command options, see Appendix A, AutoCode Options.

8.3 Templates

Templates serve as the front end to AutoCode. They determine completely what 
the output code should be for a given model (.rtf file) and command options. You 
use the template programming language (TPL) to specify the templates, which are 
merely TPL programs. We provide templates for both C and Ada code generation 
that, when compiled, will produce what is called a standalone simulation 
executable.

Templates and the TPL are described in the Template Programming Language User’s 
Guide.

8.4 BlockScript Block

The block algorithms for supplied blocks cannot be modified or customized 
through AutoCode templates. However, you can create your own block by 
specifying the algorithm in a BlockScript block. A BlockScript block uses a 
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scripting language called BlockScript that is translated into C or Ada code and it 
is generated along with the other blocks in the system. BlockScript provides a 
generalized programming capability for defining SystemBuild blocks for 
simulation and code generation, and can also be accessed from BetterState. 
BlockScript allows you to write the update equations that process the inputs and 
parameters to produce the outputs. BlockScript I/O can be read by the Data 
Dictionary. BlockScript is documented in the AutoCode Reference and the 
BlockScript User’s Guide.

Example 8-1 shows a user-defined BlockScript algorithm calculating the average 
of 5 numbers (using a BlockScript WHILE loop).

Example 8-1 Example of BlockScript Using WHILE Loop

Outputs: y;
parameters: p;
Float y, p(5);
Float sum;

sum=0.0;
k=1;
While k<p.size Do

sum=sum+p(k);
k=k+1;

EndWhile;
y=sum/p.size;

Resulting generated C Code segment:

/*---------- BlockScript */
/* {gplvar.Thru_Var.3} */

sum = 0.0;
k = 1;
while (k < 5) {

sum = sum + myvar[-1+k];
k = k + 1;

}
Y->Thru_Var_1 = sum/5;

Resulting generated Ada Code segment:

---------- BlockScript --
-- {gplvar.Thru_Var1.3} --

sum := 0.0;
k := 1;
while k < 5 loop

sum := sum + myvar(-1+k);
k := k + 1;

end loop;
Y.Thru_Var_1 := sum/RT_FLOAT(5);
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The parameters: p; statement causes the Parameters View in the BlockScript form 
to include a new 5-by-1 Parameter p. A %variable %myvar has been defined for 
this parameter. This causes AutoCode to replace all occurrences of p in the 
previous and following scripts to be replaced by myvar.

For more information about programming with BlockScript, see the AutoCode 
Reference and the BlockScript User’s Guide.

8.5 Data Parameterization

AutoCode users have a choice of generating block data with constant values 
entered in the Block form or to use Xmath variables (%variables) to represent the 
data symbolically. While generating code from the SystemBuild menu, this choice 
is made via the Block Parameters option, which can have values of % Xmath vars 
or Block Defaults. Example 8-2 shows generated code for a gain block using block 
default data, and Example 8-3 shows generated code for a gain block using an 
Xmath variable called gainvar, which is initialized to 5.6 in the Xmath partition.

Example 8-2 Generated Code for a Gain Block Using Block Default Data

y = 2.3 * u;

Example 8-3 Generated Code for a Gain Block Using Xmath Initialized Variable

0 generated code:
VAR_FLOAT gainvar = 5.6;
. . .
y = gainvar * U->gainvar_1;

! CAUTION:  Changing %variables can in certain cases, such as feedback loops, 
cause the blocks to be executed out of order. The result of the application might not 
match the SystemBuild simulation.
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8.6 UserCode Block

A UserCode Block (UCB) provides a strict interface between an AutoCode-
generated system and some other code. The idea is that you can implement a 
particular functionality more efficiently by supplying code rather than attempting 
to model it within SystemBuild. Such functionality includes operations dealing 
with hardware or reusing existing code found in libraries.

A UCB can also be used to increase the performance of the SystemBuild Simulator 
by linking back code within a UCB directly to the simulator. The code can be 
either handwritten or discrete procedural code generated by AutoCode.

For more information about the UCB interface and linking back into the 
Simulator, see the AutoCode Reference.

8.7 Macro Procedure Block

A Macro Procedure block provides a C-macro like capability in the generated 
code. The macro’s functionality is to be modeled within SystemBuild so that the 
simulation matches, but within the generated code, only a macro name will be 
generated. For example, you can model a function that returns the maximum of 2 
numbers, but it is much more efficient to use the MAX macro provided in C. 
Therefore, the implementation of a macro procedure must be supplied by you in 
the generated code for the code to compile. Macro procedures provide an inline 
capability for small code fragments. See the AutoCode Reference for more details 
about the code generated for a Macro Procedure block.

NOTE:  AutoCode supports macro procedure blocks for Ada as well as C. 
However, there is no standard C-macro like capability in Ada. Therefore, we 
recommend that you implement the Macro Procedure as a standard procedure and 
use the INLINE pragma.
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8.8 ZeroCrossing Blocks and Resettable Integrators

AutoCode can generate code for ZeroCrossing blocks and the resettable 
integrator. These representations are an approximation of the simulator 
implementation given the real-time nature of the generated code. You must use 
actiming and the fixed-point algorithm during simulation to ensure that your 
generated code will approximate the simulation results obtained with the fixed-
step integration algorithms supported by AutoCode. Your AutoCode results, 
however, will not exactly match the simulation results when your model uses 
ZeroCrossing blocks.

For a complete discussion of ZeroCrossing blocks and resettable integrators, see 
the SystemBuild User’s Guide.

8.9 User-Defined Code Comments

AutoCode provides the following tokens for adding comments within generated 
code:

■ blk_code_cmt for blocks

■ sb_code_cmt for SuperBlocks

■ ds_code_cmt for DataStores

These code-comment tokens are predefined user parameters, which are especially 
useful if you plan to generate documentation as described in the DocumentIt 
User’s Guide. For additional information on user parameters, see the SystemBuild 
User’s Guide.

NOTE:  Event detection is not supported.
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8.9.1 Using a User-Defined Code Comment

To use a code-comment token, take the steps described in the following phases. 

Phase One

Before code generation:

1. Create an appropriate user-parameter. 

2. Within a block, create a user-parameter with the name blk_code_cmt_s.

3. Repeat this process for each of the blocks, SuperBlocks, and DataStores where 
you want comments to appear in the generated code.

Phase Two

The second phase occurs during code generation. To insert the comments you 
created within the user-parameters into the generated code, do one of the 
following:

■ Generate code by selecting the Enable DocumentIt Block Comments option from 
the Formatting tab of the Advanced Dialog of the AutoCode code generation 
dialog.

■ Use the docit AutoCode keyword.

■ Use the -doc Xmath command option.

After code is generated, the comments placed within a block’s blk_code_cmt_s 
user-parameter appear where the block appears in the generated code. For 
SuperBlocks, only Procedure SuperBlocks have the comments placed within the 
generated code. Those comments from the sb_code_cmt_s user-parameter are 
placed at the definition of the function that represents the Procedure SuperBlock. 
For DataStores, the comments within the ds_code_cmt_s are placed at the 
definition of the DataStore.

Wind River recommends that the content of the user-parameters be plain-text, 
rather than Rich Text Format or other formatted text content, because the contents 
are placed within code.

NOTE:  Within a SuperBlock, create the user-parameter with the name 
sb_code_cmt_s and for a DataStore, create a user-parameter with the name 
ds_code_cmt_s. 
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8.9.2 Limitations

The code-comment tokens have the following limitations:

■ Any “basic block” can use the blk_code_cmt_s user-parameter, including the 
SuperBlock Block (that is, a SuperBlock reference).

■ Any DataStore can use the ds_code_cmt_s user-parameter.

■ Any SuperBlock definition can use the sb_code_cmt_s, but only for Procedure 
SuperBlocks (all variations) will the comments appear in the code.
146



9

Introduction to Software

Constructs with AutoCode
This chapter is an introduction to the blocks that implement typical software 
constructs just as loops and decision statements. This includes UserCode Blocks, 
Macro Procedure Blocks, and Procedure SuperBlocks.

9.1 Introduction

We call blocks that implement typical software logic (such as loops and decision 
statements) software constructs to differentiate from other blocks that compute a 
result (that is, functional blocks). In other words, software construct blocks deal 
with the control flow of the program rather than the data flow of the model, 
allowing the automatically generated code to more closely mimic handwritten 
code.

NOTE:  Unless otherwise noted, these blocks are not supported in Continuous 
SuperBlocks.
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9.2 Standard Procedure SuperBlocks

Standard Procedure SuperBlocks are included in the discussion of software 
constructs because a procedure represents good software engineering by creating 
a modular piece of code that can be reused throughout the model. When 
procedures are reused, code size can be greatly reduced. Maintenance of your 
design is made easier as fixes are made only in one place. Testing is more tractable 
as a procedure defines an encapsulated unit that can be independently tested, 
validated, and verified. Wind River recommends that you use Standard 
Procedures within your model.

9.3 Variable Blocks

Variable Blocks represent actual variables within the generated code. SystemBuild 
has two types of Variable Blocks, one that represents a global variable and the 
other that represents a local variable.

9.3.1 Global

A Global Variable Block is used for a variety of purposes. Traditionally, it has been 
used to communicate information between Asynchronous Procedure SuperBlocks 
and subsystems. Also, data shared across multiple processors can be easily 
accessed. Another usage of Global Variable Blocks is to provide persistent data 
during execution of the system. Standard Procedures can use Global Variable 
Blocks as well.

Global Variable Blocks represent global variables in the code. Therefore, Global 
Variable Blocks are implemented to preserve determinancy. This is only an issue 
for multi-rate and multi-processor systems. However, even for single-rate 
systems, overhead and special semantics are associated with a Global Variable 
Block when data is read and written.

Generally speaking, all reads from a Global Variable Block occur at the beginning 
of the subsystem for that time point or activation frame, while all writes to the 
Global Variable Block occur at the end of the subsystem or activation frame. See 
the AutoCode Reference for more details.
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9.3.2 Local

A Local Variable Block is similar to a Global Variable Block, except Local Variable 
Blocks represent local variables in the generated code. Therefore, a Local Variable 
Block cannot hold persistent data, and cannot be used to communicate information 
across processors, subsystems, and procedures. Local Variable Blocks provide 
efficient communication within a subsystem, and are used with the Iterator and 
IfThenElse Blocks.

9.4 Graphical Software Constructs

Software constructs are graphical representations of typical software functions. 
These functions include:

■ IfThenElse blocks

■ Looping

■ Ordering or sequencing the flow of data and calculations

■ Using local or global variables

These are basic functions used in pseudo-code for software design. Instead of 
using pseudo-code, a designer can use the function blocks to design the 
procedure, and then automatically generate code.

Vectors

You can use vectors to reduce code size when vector type data is being passed or 
operated on. Example x and example y illustrate the code size reduction for two 5-
element vectors, through the use of arrays in the code. You can tailor generated 
code through options in the Optimization tab of the Advanced AutoCode dialog (as 
shown in Optimizations).
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9.5 IfThenElse Block

The IfThenElse block implements a decision within the generated code, and then 
executes one sequence of blocks. This block is like an if statement in C or Ada. The 
IfThenElse block has output ports (pins) and a prolog section. The output ports 
are available from the face of the first condition block in the IfThenElse block 
chain. You can connect to these ports as if they were the output ports of any other 
standard block. Output from each of the block sections is connectable to the 
output ports the same way as the output of the content of a SuperBlock is 
connected to its external output.

9.5.1 IfThenElse Block Example

In our IfThenElse block example, we have the following problem requirements:

■ 2 procedures named P1 and P2, which are implemented in a particular order, 
based on the values of inputs abcd and efg.

■ The procedures to be executed for specific values of the input criteria as 
defined as follows:

Given the above problem description, the generated C code makes use of the 
IfThenElse clause to implement the requirement.

SystemBuild is used the graphical coding tool to implement the requirements of 
the Process Activation Table (PAT), using predefined software constructs. The 
top-level block (shown below) is a discrete SuperBlock, and the software 
construct blocks are used to structure the code. This example is a grouping of 
IfThenElse blocks where the required procedures, P1 and P2, are executed based 
on the input criteria of abcd and efg. The P1 and P2 procedures are standard 
procedure SuperBlocks. They represent code that is used multiple times, and is 
easily re-used.

Input Criteria Procedures Executed

abcd > 10 P1

abcd < 1 P2

abcd > 5 or efg =
1

P1, P2

efg > 6 P2, P1
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When multiple procedures (or any blocks) must be executed in a specific order the 
Sequencer can be used to indicate the order. In the above top SuperBlock, notice 
that the sequencers are the sets of vertical parallel lines. All blocks to the left of a 
sequencer are executed first, followed by all blocks to the right. The last two “else 
if” paths in the example actually specify the order of execution of procedures P1 
and P2, as indicated by the sequencers.

The outputs of the procedures are then written to variables, which can be accessed 
from the rest of the system. When using the IfThenElse construct, only the 
segment whose conditions are met is actually executed. All other segments are 
not updated, which reduces simulation time. Also, if once the IfThenElse 
construct is complete, the output myvar of the executed procedure is then read.

For the generated code from this model, see Appendix C, Sample AutoCode 
Output.
151



MATRIXX 7.0
AutoCode User’s Guide
9.5.2 Looping

Looping is another important software method that is easily accomplished 
graphically within SystemBuild with the While, Break, and Continue icons. The 
model shown below uses a For loop to calculate the factorial for each time input. 
The model uses blocks within the While container that are executed in the current 
time sample. The Break block allows an exit from the While, when the conditional 
statement feeding it is true.

In the Body Of For Loop block (inline procedure), we have the following logic:
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Note that in the looping example, the inputs and outputs are a mix of direct 
inputs (increment and input) and local variables (index, factorial).

9.5.3 Ordering or Sequencing the Flow of Data and Calculations

The IfThenElse block example and in looping example illustrate logical flow from 
software constructs and also with the sequencers. For transferring data and for 
generating desired calculations, controlling program flow is easily established 
and then modified with SystemBuild models and generated code.

9.5.4 Using Local or Global Variables

In the looping example shown in 9.5.2, p.152, the local variable is not persistent 
across time samples. Once the current iteration of the software is complete, the 
values of the local variables are lost. It is also necessary to initialize all local 
variables upon entering a SuperBlock or procedure that uses them.

9.5.5 Other Coding Considerations

The procedure Body Of For Loop is an inline procedure. Therefore, the primitive 
blocks nested within the inline procedure are merged into the subsystem of the 
parent SuperBlock. As a result, use of inline procedures can result iin a different 
block execution order and can help eliminate potential algebraic loops. An 
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alternate choice is to use a standard procedure, and the corresponding code 
would contain a call to the procedure, rather than the actual code.

An important automatic code generation feature is self-documentation. You can 
use the Comment tab on the Properties dialog of any block to describe the 
purpose of the block and how it fits into the overall system. Your comment is then 
automatically incorporated into the generated code by selecting the enable flag at 
code generation time. The code shown in example xxx illustrates typical 
comments. A recommended practice is to have a one-to-one correspondence 
between lines of code and comment lines.

9.6 Iterator Block

The While block provides a container that defines blocks that will continue to 
execute until a condition or set of conditions is met. This type of block is like a 
while loop in C and Ada.

9.7 Explicit Block Sequencing

The SystemBuild Analyzer and AutoCode automatically determine the sequence 
in which blocks are executed. However, there may be algorithms you design that 
require a set of blocks to be executed before another set of blocks. You can control 
the sequencing of blocks by using the Sequencer block to divide the diagram into 
frames; the frame on the left side executes before the frame on the right side. No 
code is generated for a Sequencer block.

Explicit sequencing is critical for managing blocks such as Global and Local 
Variable blocks, IfThenElse blocks (see IfThenElse Block), and possibly Standard 
Procedure SuperBlocks.
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9.8 Example Model

Figure 9-1 shows a model with software constructs, and Example 9-1 shows the 
code generated for this model.

The following C code (Example 9-1) was generated from the model in Figure 9-1 
with the Variable Block Read and Constant Propagation optimizations.

Example 9-1 Generated Software from Software Constructs Model (excerpt)

/****************************************************************************
| AutoCode/C (TM) Code Generator V7.x |
| WIND RIVER SYSTEMS INC., SUNNYVALE, CALIFORNIA |
*****************************************************************************
rtf filename : S_W_Model.rtf
Filename : S_W_Model.c
Dac filename : c_sim.dac
Generated on : Wed Jun 2 19:10:16 2000
Dac file created on : Thu Mar 25 10:10:09 2000
Options : -l c
--

Figure 9-1 Sample Model with Software Constructs
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-- Number of External Input : 3
-- Number of External Output: 1
--
-- Scheduler Frequency: 10.0
--
-- SUBSYSTEM FREQUENCY TIME_SKEW OUTPUT_TIME TASK_TYPE
-- --------- --------- --------- ----------- ---------
-- 1 10.0 0.0 0.0 PERIODIC
*/

#include <stdio.h>
#include <math.h>
#include "sa_sys.h"
#include "sa_defn.h"
#include "sa_types.h"
#include "sa_math.h"
#include "sa_matrix.h"
#include "sa_user.h"
#include "sa_utils.h"
#include "sa_time.h"
#include "sa_fuzzy.h"

/*** System Data ***/

/******* Structure to drive disconnected input/output. *******/

struct _DcZero {
RT_FLOAT dzero;

};

static const struct _DcZero dczero = {0.0};

#define EPSILON 1.49011611938476562E-08
#define EPS (4.0 * EPSILON)
#define ABSTOL EPSILON
#define XREMAP 1

#define SCHEDULER_FREQ 10.0
#define NTASKS 1
#define NUMIN 3
#define NUMOUT 1
#define SCHEDULER_ID 0
#define PREEMPTABLE 2

enum TASK_STATE_TYPE { IDLE, RUNNING, BLOCKED, UNALLOCATED };

static RT_INTEGER ERROR_FLAG [NTASKS+1];
static RT_BOOLEAN SUBSYS_PREINIT [NTASKS+1];
static RT_BOOLEAN SUBSYS_INIT [NTASKS+1];
static enum TASK_STATE_TYPE TASK_STATE [NTASKS+1];

/******* System Ext I/O and Sample-Hold type declarations. *******/
struct _Sys_ExtOut {

RT_FLOAT dzero;
};
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struct _Sys_ExtIn {
RT_FLOAT S_W_Model_1;
RT_FLOAT S_W_Model_2;
RT_FLOAT S_W_Model_3;

};

struct _Subsys_1_in {
RT_FLOAT S_W_Model_1;
RT_FLOAT S_W_Model_2;
RT_FLOAT S_W_Model_3;

};

/**** System Ext I/O and Subsystem I/O type definitions and ****
**** Pointers to SubSystem Outputs ReadOnly/Work areas. ****/

struct _Sys_ExtOut sys_extout;
struct _Sys_ExtIn sys_extin;
struct _Subsys_1_in subsys_1_in;

static RT_FLOAT ExtIn [NUMIN+1];
static RT_FLOAT ExtOut [NUMOUT+1];

/* Model variable definitions. */
VAR_INTEGER loop_cnt;
VAR_FLOAT result;
/* Model variable declarations. */
extern VAR_INTEGER loop_cnt;
extern VAR_FLOAT result;

/******** Tasks declarations ********/

/******* Subsystem 1 *******/
extern void subsys_1( struct _Subsys_1_in *U);

/******** Tasks code ********/

/******* Subsystem 1 *******/

void subsys_1( struct _Subsys_1_in *U
)
{

static RT_INTEGER iinfo[4];

/***** Local Block Outputs. *****/

RT_INTEGER S_W_Model_23_1;
RT_FLOAT S_W_Model_1_1;
RT_FLOAT S_W_Model_13_1;
RT_FLOAT S_W_Model_4_1;
RT_INTEGER S_W_Model_3_1;
RT_INTEGER S_W_Model_97_1;
RT_FLOAT S_W_Model_15_1;
RT_INTEGER S_W_Model_20_1;
RT_INTEGER S_W_Model_16_1;

/******* Initialization. *******/
157



MATRIXX 7.0
AutoCode User’s Guide
if (SUBSYS_PREINIT[1]) {
iinfo[0] = 0;
iinfo[1] = 1;
iinfo[2] = 1;
iinfo[3] = 1;
SUBSYS_PREINIT[1] = FALSE;
return;

}

/***** Output Update. *****/
/* ---------------------------- IfThenElse */
/* {S_W Model..2} */
if( U->S_W_Model_2 != 0.0 ) {

/* ---------------------------- ElementDivision */
/* {S_W Model..1} */
S_W_Model_1_1 = U->S_W_Model_1/U->S_W_Model_2;
/* ---------------------------- Write to Variable */
/* {S_W Model..14} */
result = S_W_Model_1_1;

}
else {

/* ---------------------------- Write to Variable */
/* {S_W Model..12} */
result = U->S_W_Model_2;

}
/* ---------------------------- Algebraic Expression */
/* {S_W Model..23} */
S_W_Model_23_1 = 1;

/* ---------------------------- Write to Variable */
/* {S_W Model..99} */
loop_cnt = S_W_Model_23_1;

/* ---------------------------- While */
/* {S_W Model..5} */
while (TRUE) {

/* ---------------------------- Read from Variable */
/* {S_W Model..13} */
S_W_Model_13_1 = result;
/* ---------------------------- Summer */
/* {S_W Model..4} */
S_W_Model_4_1 = S_W_Model_13_1 - U->S_W_Model_3;

/* ---------------------------- Write to Variable */
/* {S_W Model..21} */
result = S_W_Model_4_1;
/* ---------------------------- Read from Variable */
/* {S_W Model..3} */
S_W_Model_3_1 = loop_cnt;
/* ---------------------------- Algebraic Expression */
/* {S_W Model..97} */
S_W_Model_97_1 = 5;
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/* ---------------------------- Relational Operator -- LT-EQ-GT */
test = S_W_Model_3_1 > S_W_Model_97_1;
/* ---------------------------- Break */
/* {S_W Model..98} */
if( test ) {

break;
}
/* ---------------------------- Algebraic Expression */
/* {S_W Model..20} */
S_W_Model_20_1 = 1;
/* ---------------------------- Summer */
/* {S_W Model..16} */
S_W_Model_16_1 = S_W_Model_3_1 + S_W_Model_20_1;
/* ---------------------------- Write to Variable */
/* {S_W Model..10} */
loop_cnt = S_W_Model_16_1;
}

if(iinfo[1]) {
SUBSYS_INIT[1] = FALSE;
iinfo[1] = 0;

}
return;
EXEC_ERROR: ERROR_FLAG[1] = iinfo[0];

iinfo[0]=0;
}
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AutoCode Options
This appendix describes options that can be used when invoking AutoCode from 
within Xmath or from the OS prompt. This appendix also describes how to use an 
autostart.opt file. This appendix supplements Chapter 2, Using AutoCode.

A.1 Options When Invoking AutoCode

As described in Chapter 2, AutoCode can be invoked from the Catalog Browser, 
the Xmath Commands window, or the operating system prompt. Table A-1 lists the 
various AutoCode command options. The code generator is invoked by using the 
autocode command (Xmath) or the autostar command (from OS prompt). 

Table A-1 Options When Invoking AutoCode

Xmath Option OS Option Description

allgscope -allgscope Force all Output Scopes to be Global and all 
procedure Input Scopes to be Local.

arraymin -Oarray n Minimum size of vectorized arrays. (default: 2)

backpmap -bmap map A string specifying the map associating 
background procedures with processors. The 
syntax parallels that specified for the subsysmap 
option, except procedure numbers are used rather 
than task numbers.
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config Replaced by options.

csi -csi n csi specifies the continuous task sample interval 
(see 6.4.2 Xmath Command Options for Continuous 
Code Generation, p.114 for details.).

NOTE: Use the csi option so generated code will 
match sim results for continuous systems.

docit -doc Enables the DocumentIt tokens as described in the 
Template Programming Language User’s Guide.

doublebuf -doublebuf Force double-buffering for single-rate systems.

epinfo -epi Boolean (default=0). Generate extended 
procedure information data structures. 
Procedures generated with this option should not 
automatically be mixed with those generated 
without it.

epsilon -eps Float (default is machine epsilon). Set the value of 
epsilon used in the generated code. This option is 
used to initialize model outputs. epsilon is set to 
a very small value so that initial outputs will be 
near zero; this prevents division by zero problems. 
The AutoCode token epsilon_r is used to access 
the epsilon value. If epsilon is left blank, a 
default value is used.

errcheck -e Boolean (default=0). Enables error checking in the 
generated code. Default is 0, error checking 
disabled.

file -o file The default name is taken from the name of the 
model file; the default extension is .c or .a, 
depending on the language chosen.

Table A-1 Options When Invoking AutoCode (Continued)

Xmath Option OS Option Description
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fmarker -f Boolean (default=0). When true (1), this option’s 
value forces single-precision floating-point 
markers for encoded numbers (C language option 
only).

Example:
no -f option, generated code looks like 
y=2.3 * u;
with -f option, generated code looks like
 y=2.3f * u.

foverflow -ovfp n Integer (default=2). Indicate state of overflow 
protection for integer and fixed-point calculations. 

0 = overflow protection disabled
1 = overflow protection forced
2 = overflow protection selected by block’s 
option

glbvarblkopt -Ogvarblk Optimize read-from global varblocks.

See a on a There is 
no keyword, but has 
the command help 
autocode for 
Netscape help., 
p.169.

-h Obtains a help display.

ialg -i n ialg specifies the selected integrator as one of the 
following:

1. First order Runge-Kutta -- Euler

2. Second order Runge-Kutta -- Modified Euler

3. Fourth order Runge-Kutta -- Simpson’s 
Second Rule)

4. Kutta-Merson

5. User Integrator

See 6.4.2 Xmath Command Options for Continuous 
Code Generation, p.114 for details.

indent -indent n This integer value specifies the amount of 
indentation in output between levels. Default is 3.

Table A-1 Options When Invoking AutoCode (Continued)

Xmath Option OS Option Description
163



MATRIXX 7.0
AutoCode User’s Guide
initmerge -Oinitmerge Merge block INIT sections into one INIT section, if 
possible.

interpmap -imap map A string specifying the map associating interrupt 
procedures with processors. The syntax parallels 
that of the backpmap option.

ipath -I pathname Adds a pathname to the list of directories in which 
to search for template @include files. Can be used 
multiple times on the command line (limit 10).

krstyle -kr Generate old-style (Kernighan and Ritchie) C 
function prototypes.

language -l lang The language for generating the code: C or Ada. 
The following are accepted: c, C; a, ada, Ada, 
ADA.

linesz -linesz n This integer value specifies the maximum number 
of output characters per line. The integer value 
must be > 78. The default is 80.

loopmin -Oloop n Loop threshold for vectorized code (default: 2).

locvarblkopt -Olvarblk Optimize read-from local varblocks.

mapfile -pfile file A string defining the map file associating 
subsystems and background, startup, and 
interrupt procedures with processors. The 
subsysmap, backpmap, startpmap, and interpmap 
options override the specifications in this file, and 
if none of these options is supplied and the file 
doesn’t exist, it’s created using a default map. A 
single-line comment is indicated using // 
characters.

Table A-1 Options When Invoking AutoCode (Continued)

Xmath Option OS Option Description
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minsf -minsf n Specifies minimum AutoCode scheduler 
frequency. The real-time scheduler frequency is 
set to the larger value of the frequency determined 
by the block diagram application and the value 
specified by -minsf. Normally, the default value 
of 0.0 should be used, which allows the 
application to set its own scheduler frequency. 
Deviation from this default should be approached 
with caution, as a consistent scheduler frequency 
should normally be based on a least common 
multiple of the inverse of the application timing 
requirements (that is, frequencies).

namelen -nl n This integer value adjusts the maximum variable 
length in the generated code. The integer value 
must be > 20 (the default is 48).

nodiscon -odiscnout Optimize away disconnected outputs.

noerr -noerr Do not generate error detection code after a 
procedure call is made.

nogscope -nogscope Force all Output Scopes to be Local.

noinfo -noinfo If possible, eliminate a procedure’s INFO 
structure.

noicmap -noicmap Sets the constant variable XREMAP to False, 
which prevents initial values of states from being 
set.

nomap -nomap Boolean (default=0). Turn off the structure map 
indicating subsystem and system external inputs 
and outputs by setting the nobusmap_b token to 
True.

norestart -Onorestart Optimize out the restart capability.

nosmooth -nosmooth Turn off floating-point constant number 
smoothing.

nouy -nouy Pass procedure input and outputs as actual 
arguments to the function.

Table A-1 Options When Invoking AutoCode (Continued)

Xmath Option OS Option Description
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numproc -np n Integer (default=1). The number of processors to 
generate code for.

options -opt file Specifies the name of the options file. Options are 
entered in the file using the same syntax as if they 
were specified from Xmath or the OS. The 
exception is that map specifications are not 
enclosed between quotes. Options c an be on one 
line, separate lines or a combination. Command 
options override all of the options in the -opt file. 
The rtf file name cannot be specified in the -opt 
file. Single line comments are done by using // 
characters. See A.2 Using the autostar.opt File, p.169 
for more information about the options file.

parname -p Boolean (default=0). When true (1), specifies use 
of parameter names specified by scripts in 
language blocks instead of RP and IP arrays.

priomap -prio A string defining the priority of the subsystems. It 
has a form similar to that of the skewmap option 
(see above), except <skew value> is replaced by 
an integer priority. Provided that AutoCode can 
assign each subsystem a unique priority while 
obeying the priomap, range and list operators in 
the priomap are permitted for both subsystems 
and priorities.

procs_only -procs Sets the template parameter procs_only_b as 
true, and default template only generates 
Procedure SuperBlocks and generates UCBs and 
subsystem wrappers for each of these procedures.

-prompt Prompt for command options.

propconst -Opc Propagate constants across blocks.

reuse -Oreuse n Strategy for reusing subsystem local outputs.
0 : Do not reuse (default)
1 : Reuse by matching named outputs
2 : Reuse whenever possible.

roundfloat -round Force an implicit float-to-integer conversion to be 
rounded rather than truncated.

Table A-1 Options When Invoking AutoCode (Continued)

Xmath Option OS Option Description
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rtf See note bon 
p.169.

The name of the generated real-time file (.rtf). 
Default: modelname.rtf

rtos -rtos Boolean (default=0). Read the default Real-Time 
Operating System configuration file, ac_rtos.cfg, 
to obtain RTOS parameter information (or create 
ac_rtos.cfg if it doesn't exist). This option is 
incompatible with the rtosfile, subsysmap, 
startpmap, backpmap, interpmap, and 
priomap options. More information is given in 
the AutoCode Reference.

rtosfile -rtosf file A string specifying the name of the file from 
which to read the Real-Time Operating System 
configuration information. This option is 
incompatible with the RTOS, subsysmap, 
startpmap, backpmap, interpmap, and 
priomap options.

scheduler -sched n Choose a scheduler type:
0 : one-stage output posting (default)
1 : pre & post output posting

sd -sd n Integer. Specifies the number of significant digits 
for encoded numbers. Default: long constants are 
emitted to full machine width.

skewmap -skew n A string defining the skew of each subsystem. It 
has the form:

<skewmap>:== <subsystem #> <skew value> {
<skewmap> ... }
<subsystem #>:== An integer naming the
subsystem
<skew value>:== A float defining the skew

Subsystem numbers and skew values must be 
separated by a single space in the string. 
Optionally, a range or list of subsystem numbers 
can be used instead of <subsystem #> above.

smcallout -smco Boolean (default=0). Generate call-outs for access 
to all elements in shared memory. Turn on the 
shared memory function call out.

Table A-1 Options When Invoking AutoCode (Continued)
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startpmap -smap map A string specifying the map associating startup 
procedures with processors. The syntax parallels 
that of the backpmap option.

subsysmap -pmap map A string specifying the map associating 
subsystems with processors. The map contained 
in the string has the form:

<map>:== <prsr #> <list> { <map> ... }
<prsr #>:== a processor number

(starting
at 1)
<list>:== <task #>, { <task #> ... }
<task #>:== a task number (starting at 0)

Processor numbers and lists must be separated by 
a single space, while elements of the list must be 
separated by a single comma.

tpldac -d file A direct access template file (see Chapter 5).
Default: $CASE/ACC/templates/c_sim.dac for 
C $CASE/ACA/templates/ada_rt.dac for Ada

tplsrc -t file This is a template source file (see Chapter 5).
Default: $CASE/ACC/templates/c_sim.tpl for C
$CASE/ACA/templates/ada_rt.tpl for Ada

typecheck See note c Boolean (default=1). Enables data type checking. 
See the SystemBuild online help for simulation for 
details about data typing. For AutoCode the 
default is 1; type checking is enabled. If 
typecheck is set to false, all the variables in the 
model are hardcoded with float data type.

ucbparams -ucbparams Use RP/IP temporaries as actuals to UCB call 
instead of %var variables.

Table A-1 Options When Invoking AutoCode (Continued)
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A.2 Using the autostar.opt File

If you invoke AutoCode with the same options consistently, you can put these 
options into an options file, saving a lot of error-prone, repetitive typing each time 
you invoke AutoCode. AutoCode reads the options file at startup, and performs 
the options as though you had entered them from the O/S prompt. Although you 
can use an options file whether you invoke AutoCode from the Xmath Commands 
window or the operating system prompt, the only options that you can specify in 
the options file are operating system command options.

vars See note d on 
p.169.

Boolean (default=1). The default is 1, meaning that 
%vars are included in the model. Note that if the 
code is generated from a model, the model is 
processed using the vars keyword. However, if 
the AutoCode function is invoked from the 
operating system prompt using an existing .rtf, 
the vars keyword is ignored. To turn off vars, 
specify !vars. Same basic functionality as the vars 
simulation keyword as described in the 
SystemBuild User’s Guide. 

vbcallout -vbco Boolean (default=0). Generate callouts around the 
critical section of variable block accesses in the 
generated code.

vectormode -Ov n Vectorization option:
0 : Scalar code generation (default)
1 : Vectorize based on labeling
2 : Maximal vectorization

a. There is no keyword, but has the command help autocode for Netscape help.
b. The name of the rtf file must always be specified when invoking from Xmath or the 

OS.
c. The typecheck feature applies only to the creation of the rtf file, thus there is no 

equivalent option from Xmath or the OS.
d. This Xmath option is used for creation of the rtf. When invoking from the OS, the rtf 

must already exist; therefore, there is no OS option equivalent.

Table A-1 Options When Invoking AutoCode (Continued)
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The default options file is autostar.opt. If you have an autostar.opt file in the 
current working directory from which you invoke AutoCode, the options in that 
file will be executed when you invoke AutoCode. If you specify an option from 
the Xmath Commands window that is also in the options file, the command option 
overrides the same option in the options file (see Example A-1 and the paragraphs 
following).

For different applications, you might need to invoke AutoCode differently. For 
this reason, you can have multiple options files. To invoke AutoCode with an 
options file other than autostar.opt, specify the name of the options file when you 
invoke AutoCode (see Example A-2 and the paragraphs following).

Options are entered into the options file using the same syntax as if they were 
specified from the O/S prompt. The exception is that map specifications are not 
enclosed between quotes. Options can be on one line, separate lines or a 
combination. The rtf file name cannot be specified in the options file. Single line 
comments are done by using // characters.

Example A-1 shows an options file.

Example A-1 Example autostar.opt Options File

// Sample options file //
-l c
-t c386_c860_mb2.tpl
-o myoutput

To use this file, invoke AutoCode as follows:

autostar model.rtf

This invokes AutoCode with the autostar.opt options file. Output is directed to the 
file myoutput.

With the following command:

autostar -o myoutput3 model.rtf

The options file is again used, but the output file option (-o) is specified, so it 
overrides the corresponding command in the options file. The output 
documentation will be in file myoutput3, not in file myoutput as specified in the 
options file.
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Example A-2 shows an options file called myopt.opt.

Example A-2 Example Options File Called myopt.opt

// Sample options file //
-l c
-t c386_c860_mb2.tpl
-o myoutput2

To use this file, invoke AutoCode as follows:

autostar -opt myopt.opt model.rtf

This invokes AutoCode with the myopt.opt options file.

So, if you have both of the above option files (shown in Examples A-1 and A-2) in 
your directory, invoking autostar without the -opt option puts the generated code 
into file myoutput (the autostar.opt options file is used). Invoking autostar with 
the -opt myopt.opt option as shown above puts the generated code into file 
myoutput2.

A.3 Mapping Options

This section describes the options for controlling subsystem execution.

A.3.1 Setting Subsystem Priorities

If you do not specify any priorities, AutoCode allocates priorities to the 
subsystems in the following manner. For C it allocates priority 0 to the scheduler, 
and 1, 2, ..., total number of subsystems to subsystem 1, subsystem 2, ..., 
respectively. For Ada by default, it allocates the number equal to the total number 
of subsystems to the scheduler, and grows downward for subsystem 1, subsystem 
2, ... , respectively. 

‘For C or Ada, if you specify only the scheduler priority using the -prio option, the 
subsystems will be given the priority 1 plus the scheduler priority. Or, if at least 
one more subsystem is specified, depending on the sequence of priorities you 
establish in specifying subsystems, the priority order will be ascending or 
descending.
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Depending on the operating system you are using, you might need to change the 
default mapping. In some operating systems, the smaller the number, the higher 
the priority, but in others, the opposite sequence might prevail. You can change 
the priorities by using the prio option. Syntax:

-prio subsystem# priority

When specified from the OS prompt, the syntax is

-prio "subsystem# priority"

Example:

-prio 0 30 1..3 29 3..n 28.

From the O/S prompt the above example would be:

-prio "0 30 1..3 29 4..n 28"

This example sets the priority 30 to scheduler subsystem 0 and 29 to subsystems 
1,2 and 3 and priority 28 to subsystem 4 onwards. n is always 65535. Be sure to 
place the scheduler priority at the beginning of the -prio option. The subsystem# 
and priorities must be given in pairs and delimited by a space.

The priority of a subsystem, if not specified, depends on the previous and 
successor subsystems. The system will not allocate a priority greater than the 
successor subsystem. AutoCode will not allocate a negative subsystem ID. Every 
subsystem priority must be less than the scheduler subsystem priority, whether 
the sequence of priority numbers is ascending or descending. ‘..’ is used to specify 
the range and ‘,’ is for listing. In -pfile the option can be:

-prio  0    30

       1,3   29

       4..7  28

As no subsystem can have more than one priority, the priorities cannot have the 
range or list operators ‘..’, ‘,’.

Example:

-prio 0 30

       1 28..26

       2 25,24    is INVALID, but

Example:
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-prio 0      30

1..n   9..2 is VALID and subsystems 1 to n will be assigned priorities between 9 
and 2.

A.3.2 Setting Subsystem Skews

With the skew option, you can change skews specified in SystemBuild. One use of 
this option is to reset the skews which have been applied to SuperBlocks in order 
to split a large subsystem into two or more parts. A reason for splitting up such a 
subsystem is that the parts can be run in parallel on multiple processors. Resetting 
the skew ensures that they all start at the same time.

The syntax of the skew option is similar to that of the prio option.

-skew subsystem# skew

Examples:

Only the subsystems can use the range and list operators ‘..’, ‘,’. 

Example:

-skew 1 .1

2..5 .002

6,8 .003

A.3.3 Setting Processor Subsystem Map

When generating code for multiple processors, a subsystem-to-processor map 
must be specified. If no mapping is specified, AutoCode will map the subsystems 
to different processors using the following rule: 

Processor No. = ((subsys_id-1)% max. no. of processors) + 1

For a system with six subsystems and 2 processors, this would assign subsystems 
1, 3, and 5 to processor 1 and subsystems 2, 4, and 6 to processor 2. Scheduler 0 is 
always assigned to processor 1. When the default mapping rule is used, the 
mapping is saved in file autocode.pmp in the working directory. You can edit 

-skew 1 .1 2 .002 From Xmath

-skew "1 .1 2 .002" From the O/S prompt
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this file and specify this file name for future invocations of AutoCode using the -
pfile option.

If the -pfile option is specified but the file does not exist, AutoCode will create the 
file and save the default mapping to it rather than to autocode.pmp. Note that 
-pmap specifications are not saved to the file specified by the -pfile option.

To change the default processor mapping, use the -pmap option. The syntax is 
similar to that of -prio and -skew options.

-pmap processor# subsystem#

Example: 

-pmap 1 0 2 2,3,4 3 5,6

-pmap "1 0 2 2,3,4 3 5,6" (Command Line)

The above example allocates subsystem 0 to processor 1 and 2, 3, and 4 to 2 and 5, 
6 to 3.

-pmap 1 0,1
2 2..6

The subsystems can have the range and list operators ‘..’, ‘,’.

A.3.4 Processor Map Specification from the OS Prompt

This section describes the command processor mapping for subsystem tasks, 
background, startup and interrupt procedure SuperBlocks. The mapping is 
specified by using the -pmap, -bmap, -smap, and -imap options. 

The following is the format of these options:

<option> "<map>"

where:<option> :== [ -pmap, -bmap, -smap, -imap ]
<map> :== <prsr #> <list> { <map> ... }
<prsr #> :== <processor number starting at 1>
<list> :== <task/procedure numbers>

example:
autostar -l c -pmap "1 0,1,3 2 2,4" -np 2 test.rtf

You can use the -pfile option to generate a default set of mappings. The example 
maps subsystems 0 (the scheduler), 1, and 3 to processor 1 and subsystems 2 and 
4 to processor 2.
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This appendix describes the AutoCode Procedure Software Development Kit 
(ACP SDK). This SDK provides users of AutoCode generated code an Application 
Programming Interface (API) to generated Standard and Startup Procedure 
SuperBlock code. An API to the generated procedures allows a user to integrate 
the generated code into a non-AutoCode generated system.

B.1 Scope

This appendix is for the MATRIXX AutoCode user who has built a modular 
model using Procedure SuperBlocks and now needs to integrate the generated 
code into a complete system. This appendix assumes that you are familiar with 
the use of SystemBuild and AutoCode. If not, please see the MATRIXX Help and 
the SystemBuild User’s Guide. This appendix describes the basis for the SDK and 
provides some examples on the usage of the API.
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B.2 Supported Versions and Languages

This SDK has been developed and tested using MATRIXX 7.X. The kit contains 
templates to generate C, C++, and Ada code. 

The contents of the AutoCode SDK are summarized in Table B-1.

 Table B-1 AutoCode SDK Contents

Filename/Parameter Description

ada_sdk.tpl AutoCode TPL file for generating the Ada version of the 
procedures and API functions. See B.7.2 Physical Design 
(cpp_sdk.tpl), p.189.

c_sdk.tpl AutoCode TPL file for generating the C version of the 
procedures and API functions. See B.4.5 Physical Design 
(c_sdk.tpl), p.180.

ialg

(for integration 
algorithm)

Specifies the integrator selection (corresponds to the IALG 
Options tag on the Advanced dialog as described in 
Chapter 2):

0 = user-defined integrator

1 = first order Runge-Kutta integrator

2 = second order Runge-Kutta integrator (default)

3 = fourth order Runge-Kutta integrator

4 = Kutta-Merson integrator

csi Specifies the continuous task sample interval

minsf Specifies the minimum AutoCode scheduler frequency in 
seconds (0.0 is the default).

c_sdk_m.tpl Same as c_sdk.tpl, except each procedure is generated into a 
separate .c and .h file. See B.4.6 Physical Design (c_sdk_m.tpl), 
p.181.

c_core.tpl Common TPL between c_sdk.tpl and c_sdk_m.tpl.

c_sdkcore.tpl Common TPL code for C and C++ templates.

cpp_sdk.tpl Same as c_sdk.tpl, except, C++ classes are used for the API.

See B.7.2 Physical Design (cpp_sdk.tpl), p.189.
176



B

B
Software Development Kit
B.3 Overview

B.3.1 Procedures-Only SystemBuild Model

This SDK is based on the assumption that you want modular, reusable code to be 
included into your system. This is accomplished by creating your model using 
only Procedure SuperBlocks and a single top-level discrete SuperBlock as a 
wrapper for all of the top-level procedures. For each of the top-level procedures, 
the API interface is generated. Also, the API interface is generated for all Startup 
Procedure SuperBlocks in the model.

B.3.2 Limitations

The SDK cannot properly generate code for procedures that use Xmath partitions 
for %vars assigned to Procedure SuperBlock blocks.

B.3.3 Application Programming Interface

The procedures-only SystemBuild model is generated with AutoCode using the 
SDK template appropriate for the programming language you plan to use. The 

cpp_sdk_m.tpl Same as cpp_sdk.tpl, except each procedure is generated 
into a separate .cpp and .h file. See B.7.3 Physical Design 
(cpp_sdk_m.tpl), p.190.

cpp_core.tpl Common TPL between cpp_sdk.tpl and cpp_sdk_m.tpl.

wheellib.cat Example SystemBuild model file. See B.7.6 Example 4: Wheel 
Program (CPP-SDK), p.193.

wheeldriver.c Example driver program (C). See Example B-6, p.186.

wheeldriver.cpp Example driver program (C++). See Example B-9, p.195.

Table B-1 AutoCode SDK Contents (Continued)

Filename/Parameter Description
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template generates code for the procedures in the model and generates an 
interface to the top-level procedure(s) specified in the top-level discrete 
SuperBlock of the model. The interface is composed of three elements: interface 
structure, initialization function, and execute function.

Interface Structure

The interface structure is a data structure containing the private data needed by 
the AutoCode generated procedure. You will need to create an instance of this 
structure and pass it as an argument to the other API functions.

Initialization( ) Function

This initialization function initializes the interface structure. This function must 
be called once for each instance of an interface structure and called before any 
other API function.

Execute( ) Function

The execute( ) function is a wrapper function that interfaces your code to the 
AutoCode generated procedure. The function arguments vary depending on the 
procedure’s inputs and outputs. Call this function to execute the procedure.

B.3.4 Driver Program

The driver program is code that you implement to call the procedure API 
functions. The driver is responsible for managing the input/output data of the 
procedures. 

B.4 C API

This section describes the generated C code of the C SDK template.
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B.4.1 Logical Design

The logical design of the API consists of one structure and two functions for each 
of the top-level procedures.

B.4.2 Interface Structure

The interface structure is a C struct containing the private data needed to support 
the execution of the procedure. The structure is based on the following 
“boilerplate” which describes the kinds of data found in this structure.

Example B-1 C Interface Structure

struct _ procedurename _ext {
procedurename _info procedurename _i;
procedurename _s procedurename _s_s;

};

where procedurename is the name of the top-level procedure and _ext is a suffix to 
distinguish this structure from other structures of the procedure.

The interface structure contains the procedure’s INFO and STATE structures. For 
more information about these structures, see the AutoCode Reference. Depending 
on exactly what the procedure needs and/or optimizations you have used during 
code generation, these structures may or may not be present. 

Since this is a private data structure, there is no need to discuss its purpose or 
content any further. The only requirement is that an instance of this structure be 
created for each instance of the procedure you want to call and that it is properly 
initialized.

B.4.3 Initialize( ) Function

This function initializes an instance of (instantiates) the procedure’s interface 
structure. The function has the following signature. This function must be called 
once for each instance of the interface structure and before any other API 
function.

void procedurename _Initialize(
struct _ procedurename _ext *_idata

);
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B.4.4 Execute( ) Function

The execute( ) function is the calling interface from your code to the generated 
procedure. The function has the “boilerplate” signature shown in Example B-2, 
p.180.

Example B-2 Execute( ) Function

RT_INTEGER procedurename _Execute(
struct procedurename _u *U,
struct procedurename _y *Y,
RT_FLOAT TIME,
struct _ procedurename _ext *_idata

);

If you use the AutoCode –nouy option, which passes procedure input and 
outputs as actual arguments to the function, the code looks similar to 
Example B-2.

Example B-3 Execute( ) Function (with –nouy option)

RT_INTEGER procedurename _Execute(
RT_datatype u1 [, RT_ datatype un]
RT_datatype *y1 [, RT_ datatype *y n]
RT_FLOAT TIME,
struct _ procedurename _ext *_idata

);

In both of the above examples, struct procedurename_u is the procedure’s input 
argument structure; struct procedurename_y is the procedure’s output argument 
structure; TIME is the current simulated time measured from the start of the 
simulation.

Depending on the exact number of inputs, outputs, and whether the current time 
is needed, the interface varies for each procedure. You must declare an instance of 
the input/output structures and pass all necessary arguments to this function to 
properly execute the procedure. The function returns an error code, 0 meaning no 
error; any other is an error that can be determined from predefined error codes in 
the sa_defn.h SA-Library header file.

B.4.5 Physical Design (c_sdk.tpl)

The physical design of the API is the grouping of functions and data structures 
into source files. The template generates two files: the header file and the source 
file.
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Header File

The generated header file contains all of the data structures used by all of the 
procedures in the generated code. This includes the procedure’s input, output, 
INFO and state data structures as well as the interface structure to the top-level 
procedure(s) and the function prototypes for the API functions. The header file 
name has the format toplevel.h, where toplevel is the name of the top-level discrete 
SuperBlock of the model.

Source File

The generated source file contains code for all of the procedures including the API 
functions for each of the top-level procedures. The source file name has the format 
toplevel.c, where toplevel is the name of the top-level discrete SuperBlock of the 
model.

B.4.6 Physical Design (c_sdk_m.tpl)

The physical design of the API is the grouping of functions and data structures 
into source files. This template generates multiple files.

Header Files

A header file is created for each Standard and Startup Procedure that contains all of 
the data structures used by that procedure. This includes the procedure’s input, 
output, INFO, and state data structures. The name of each header file is based on 
the name of the Procedure SuperBlock. The function prototypes for the API 
functions for all top-level Standard Procedures are created in a separate header 
file. That header file name has the format toplevel.h, where toplevel is the name of 
the top-level discrete SuperBlock of the model.

Source File

A source file is created for each Standard and Startup Procedure that contains code 
for the procedure. The name of each source file is based on the name of the 
Procedure SuperBlock. The implementation of the API functions for all top-level 
Standard Procedures are created in a separate source file. That source file name 
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has the format toplevel.c, where toplevel is the name of the top-level discrete 
SuperBlock of the model.

B.4.7 Compilation and Link Details

Given that we are using AutoCode generated code, the same compilation 
configuration that is needed for the standalone simulation code will be needed 
when using the SDK functions. There are only three details related to the 
Standalone Library and machine platform. Of course, all of the individual source 
files will need to be compiled and then all linked together.

Standalone Library Header Files

You will need all of the Standalone Library’s header files for proper compilation 
of the generated code. You can either copy the Standalone Library header files 
into your current working directory, or add the appropriate compiler option to 
specify the library’s distribution directory in the compiler’s include path.

Platform Indicator

When compiling the generated source file, you must define the appropriate 
platform symbol. For example, if you are using a Solaris platform, you need to 
define the pre-processor symbol at the compiler’s command prompt, –-
DSOLARIS. See the AutoCode Reference for the symbol for your platform and other 
syntax information.

Standalone Library Source Files

The Standalone Library contains support routines for the generated code. 
Although mostly used for the standalone simulation, the generated procedure 
may need some of the Standalone Library’s routines, especially if fixed-point is 
used. If you receive errors when linking, this is most likely a result of not 
compiling and linking the appropriate Standalone Library source file. Find the 
needed Standalone Library source file, compile it and link it along with the other 
object files for your system.
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B.5 Sample Code (C-SDK) Example

Example B-4 illustrates the code generated in the header file and Example B-5 is a 
sample driver program that calls the procedure. The top-level discrete SuperBlock 
is named: interfaces and the top-level procedure is named: feather.

Example B-4 Header File (interfaces.h)

/****************************************************************************
| AutoCode/C (TM) Code Generator
| WIND RIVER SYSTEMS INC., SUNNYVALE, CALIFORNIA
*****************************************************************************
rtf filename : interfaces.rtf
Filename : interfaces.h
Dac filename : c_sdk.dac
Generated on : Tue Feb 3 11:59:07 2000
Dac file created on : Tue Feb 3 11:59:06 2000

AutoCode Procedure Software Development Kit
Procedure Name Inputs Outputs INFO States
--------------------------------------------------------------
feather YES YES YES NO

*/
#ifndef _INTERFACES_H_
#define _INTERFACES_H_

#include "sa_sys.h"
#include "sa_types.h"

/******* Procedure: feather *******/

/***** Inputs type declaration. *****/
struct _feather_u {

RT_FLOAT input_val;
};

/***** Outputs type declaration. *****/
struct _feather_y {

RT_FLOAT gain_out;
};

/***** Info type declaration. *****/
struct _feather_info {

RT_INTEGER iinfo[5];};

/* ********************************************************************
************************ I N T E R F A C E S ************************

*********************************************************************
*/

/*
**
** Interfaces to: feather
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**
*/

struct _feather_ext {
struct _feather_info feather_i;

};

/* Function: feather_Initialize
**
** Abstract: Initialize procedure's private data
**
** Parameters: _idata (in) : ptr to an instance of
** procedure's interface data
**
*/
extern void feather_Initialize(struct _feather_ext *_idata);

/* Function: feather_Execute
**
** Abstract: Execute the procedure
**
** Parameters: Procedure's input and output variables
** Instance of interface structure
** Current time may be needed as well.
** Interface varies for each procedure.
**
** Returns: error status, 0 = no error,
** else see errors in sa_defn.h
**
*/
extern RT_INTEGER feather_Execute(

struct _feather_u *U,
struct _feather_y *Y,
struct _feather_ext *_idata);

#endif

Example B-5 is a sample driver program. 

Example B-5 Driver Program (main.c)

#include <stdlib.h>

#include <stdio.h>
#include "interfaces.h"
int main() {

struct _feather_u in;
struct _feather_y out;
struct _feather_ext feather_inf;

int i;

srand(304);
feather_Initialize(&feather_inf);
for(i=0; i < 20; i++) {

in.input_val = (RT_FLOAT)(rand() / 8.5);
184



B

B
Software Development Kit
feather_Execute(&in, &out, &feather_inf);
printf(“input: %f\toutput: %f\n”, in.input_val, out.gain_out);

}
return 0;

}

B.6 Wheel Program (C-SDK) Example

The wheel program example uses a supplied example model and source code to 
illustrate the steps needed to generate, compile, and execute the driver and SDK 
generated code.

Step 1: Set up

We need to set up a current working directory. Create a new subdirectory, called 
wheeltest.  Change directory to wheeltest to make it the current working directory 
and copy all of the SDK files into it.

Step 2: Generate API

We need to generate the API structures and functions. This is accomplished by 
performing the following steps:

1. Launch Xmath and SystemBuild from within the current working directory.

2. Load the example model file: wheellib.cat.

3. Generate code using AutoCode. From the Xmath Commands window, enter:

autocode "wheel_library", { language="c", tplsrc="c_sdk.tpl", procs_only,
nouy }

AutoCode generates two source files: wheel_library.h andwheel_library.c.
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Step 3: Compile and Link API Functions and Driver Program

With the API functions generated, all we need to do is compile and link those API 
functions with the supplied driver program (wheeldriver.c) that is our example 
system. 

Perform the following steps from an operating system command prompt:

1. Copy SA Library header files into your current working directory. If you need 
other SA Library Files, especially the fixed-point implementations, copy those 
files. If you do not copy the header files, you can add –I include path 
directives to the compile line.

2. Compile and link the program as follows:

(UNIX - Solaris)

% acc –o wheel –DSOLARIS wheeldriver.c wheel_library.c

(Windows)

C:> CL -Op -O1 -W1 -DMSWIN32 -Fewheel_library.exe wheel_library.c
wheeldriver.c

3. If you get any link errors, specifically missing symbols, it is most likely that 
you need to compile and link an SA Library File. Determine which SA library 
file contains the function(s) (per the link error message), and then compile 
and link with those files.

4. Run the program and some results will be output to the screen.

Example B-6 Driver Program (wheeldriver.c)

#include <stdlib.h>
#include <stdio.h>

#include "wheel_library.h"

typedef struct _wheeldata {
struct _whl_velocity_ext vel_data;
struct _whl_motion_ext motion_data;
struct _whl_recoil_ext recoil_data;

} WheelData;

NOTE:  This example does not require any of the Standalone Library source files 
to be compiled and linked. If it did, you could add those files to the above 
command.
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int main()
{

WheelData wheels[4];
int i;
RT_FLOAT in1, in2;
RT_FLOAT vel, motion, recoil, area;
RT_FLOAT curTime;

srand(281);

for(i=0; i<4; i++) {
whl_velocity_Initialize(&wheels[i].vel_data);
whl_motion_Initialize(&wheels[i].motion_data);
whl_recoil_Initialize(&wheels[i].recoil_data);

}

curTime = 0.0;

while (curTime <= 5.0) {
in1 = (RT_FLOAT)(rand() / 450.5);
in2 = (RT_FLOAT)(rand() / 1004.25);
printf("TIME = %f\n", curTime);
for(i=0; i<4; i++) {

in1 = in1 + (0.15*i);
in2 = in2 - (0.05*i);
whl_velocity_Execute(in1, in2, &vel, curTime, &wheels[i].vel_data);
whl_motion_Execute(vel, &motion, curTime, &wheels[i].motion_data);
whl_recoil_Execute(vel, &recoil, &area, curTime, &wheels[i].recoil_data);

printf("\tW%d\t%f\t%f\t%f\t%f\n",i,vel,motion,recoil,area);
}

curTime = curTime + 0.125;
}

return 0;
}
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B.7 C++ API

This section describes the generated C++ code of the C++ SDK template.

B.7.1 Logical Design

The logical design of the API consists of a class for each of the top-level 
procedures. That class contains the private data and methods for properly 
invoking the AutoCode procedure.

Class

A class is created that presents an interface to the AutoCode generated object. The 
class name is of the form: procedurename_proxy.

Private Data Member

The private data of this class is a struct containing the private data needed to 
support the execution of the procedure. The structure is based on the following 
“boilerplate” which describes the kinds of data found in this structure.

struct _ procedurename _ext {
procedurename _info procedurename _i;
procedurename _s procedurename_s_s;

} m_procdata;

where procedurename is the name of the top-level procedure, and m_procdata is a 
member instance of the structure.

The structure contains the procedure’s INFO and STATE structures. For more 
information about these structures, see the AutoCode Reference. Depending on 
exactly what the procedure needs and/or optimizations you have used during 
code generation, these structures may or may not be present. Since this is a 
private data structure, there is no need to discuss its purpose or content any 
further.
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Constructor Method

The purpose of this class constructor is to initialize an instance of the private data 
member structure.

Execute Method

This method is the calling interface from your code to the generated procedure. 
The function has the following “boilerplate” signature.

RT_INTEGER Execute(
struct procedurename _u *U,
struct procedurename _y *Y,
RT_FLOAT TIME

);

or if using the AutoCode –nouy option:

RT_INTEGER Execute(
RT_datatype u1 [, RT_ datatype un]
RT_datatype *y1 [, RT_ datatype *y n]
RT_FLOAT TIME

);

where struct procedurename_u is the procedure’s input argument structure; struct 
procedurename_y is the procedure’s output argument structure; TIME is the current 
simulated time measured from the start of the simulation.

Depending on the exact number of inputs and outputs, and whether the current 
time is needed, the interface varies for each procedure. You must declare an 
instance of the input/output structures and pass all necessary arguments to this 
function to properly execute the procedure. The function returns error code 0, 
which means no error. Any other code indicates an error that can be determined 
from predefined error codes in the sa_defn.h SA-Library header file.

B.7.2 Physical Design (cpp_sdk.tpl)

The physical design of the API is the grouping of functions and data structures 
into source files. There are two files generated by the template: a header file and a 
source file.
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Header File

A header file is created that contains all of the data structures used by all of the 
procedures in the generated code. This includes the procedure’s input, output, 
INFO and state data structures as well API class declarations. The header file 
name has the format toplevel. h, where toplevel is the name of the top-level discrete 
SuperBlock of the model.

Source File

A source file is created that contains code for all of the procedures including the 
API class methods for each of the top-level procedures. The source file name has 
the format toplevel. cpp, where toplevel is the name of the top-level discrete 
SuperBlock of the model.

B.7.3 Physical Design (cpp_sdk_m.tpl)

The physical design of the API is the grouping of functions and data structures 
into source files. This template generates multiple files.

Header Files

A header file is created for each Standard and Startup Procedure that contains all of 
the data structures used by that procedure. This includes the procedure’s input, 
output, INFO and state data structures. The name of each header file is based on 
the name of the Procedure SuperBlock. The proxy classes for the API functions for 
all top-level Standard Procedures are created in a separate header file. That 
header file name has the format toplevel.h, where toplevel is the name of the top-
level discrete SuperBlock of the model.

NOTE:  The actual AutoCode procedures are generated as free functions. This 
approach minimizes the amount of generated code. For example, if each of the 
procedure’s descendent procedures where part of the class, then if more than one 
top-level procedure called the same procedure, that procedure would have to be 
implemented as member functions of both classes.
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Source File

A source file is created for each Standard and Startup Procedure that contains code 
for the procedure. The name of each source file is based on the name of the 
Procedure SuperBlock. The implementation of the API proxy classes for all top-
level Standard Procedures are created in a separate source file. That source file 
name has the format toplevel.cpp, where toplevel is the name of the top-level 
discrete SuperBlock of the model.

B.7.4 Compilation and Link Details

The compilation and link details are the same as documented in the C API section.

B.7.5 Example 3: Sample Code (CPP-SDK)

Example B-7 illustrates the code generated in the header file and a sample driver 
program that calls the procedure. The top-level discrete SuperBlock is named 
interfaces and the top-level procedure is named feather.

Header File (interfaces.h)

Example B-7 Header File (interfaces.h)

/****************************************************************************
| AutoCode/C (TM) Code Generator
| WIND RIVER SYSTEMS INC., SUNNYVALE, CALIFORNIA
*****************************************************************************
rtf filename : interfaces.rtf
Filename : interfaces.h
Dac filename : cpp_sdk.dac
Generated on : Tue Feb 3 11:59:07 1998
Dac file created on : Tue Feb 3 11:59:06 1998

AutoCode Procedure Software Development Kit

Procedure Name Inputs Outputs INFO States
--------------------------------------------------------------
feather YES YES YES NO

*/

#ifndef _INTERFACES_H_
#define _INTERFACES_H_
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#include "sa_sys.h"
#include "sa_types.h"

/******* Procedure: feather *******/

/***** Inputs type declaration. *****/
struct _feather_u {

RT_FLOAT input_val;
};

/***** Outputs type declaration. *****/
struct _feather_y {

RT_FLOAT gain_out;
};

/***** Info type declaration. *****/
struct _feather_info {

RT_INTEGER iinfo[5];
};

// /////////////////////////////////////////////////////////////////

//
// CLASS: feather_proxy
//
class feather_proxy {
/////
///// methods
/////
public:

//////// Default Constructor
//
feather_proxy();

// Function: Execute
//
// Abstract: Execute the procedure
//
// Parameters: Procedure's input and output variables
// Current time may be needed as well.
// Interface varies for each procedure.
//
// Returns: error status, 0 = no error,
// else see errors in sa_defn.h
//
RT_INTEGER Execute(

struct _feather_u *U,
struct _feather_y *Y);

//////
////// private data
//////
private:

struct _feather_ext {
struct _feather_info feather_i;

} m_procdata;
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};
#endif

Driver Program (main.cpp)

Example B-8 Driver Program (main.cpp)

#include <stdlib.h>
#include <stdio.h>
#include "interfaces.h"

int main() {
struct _feather_u in;
struct _feather_y out;
feather_proxy theFeather;
int i;

srand(304);
for(i=0; i < 20; i++) {

in.input_val = (RT_FLOAT)(rand() / 8.5);
theFeather.Execute(&in, &out);
printf("input: %f\toutput: %f\n", in.input_val, out.gain_out);

}
return 0;

}

B.7.6 Example 4: Wheel Program (CPP-SDK)

This example uses the supplied example model and source code to illustrate the 
steps needed to generate, compile, and execute the driver and SDK generated 
code.

Step 0: Set up

We need to set-up a current working directory. Create a new subdirectory, called 
wheeltest.  Change directory to wheeltest to make it the current working directory 
and copy all of the SDK files into it.
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Step 1: Generate API

We need to generate the API structures and functions. This is accomplished by 
performing the following steps:

1. Launch Xmath and SystemBuild from within the current working directory.

2. Load the example model file: wheellib.cat.

3. Generate code using AutoCode. From the Xmath Commands window, enter:

autocode "wheel_library", {
language="c",tplsrc="cpp_sdk.tpl",file="wheel_library.cpp",
procs_only,nouy }

AutoCode should have generated two source files: wheel_library.h and 
wheel_library.cpp.

Step 2: Compile and Link API Functions and Driver Program

With the API functions generated, all we need to do is compile and link those API 
functions with the supplied driver program (wheeldriver.cpp) that is our example 
system. Perform the following steps from an operating system command prompt.

1. Copy SA Library header files into your current working directory. If you need 
other SA Library Files, especially the fixed-point implementations, copy those 
files. If you do not copy the header files, you can add –I include path 
directives to the compile line.

2. Compile and link the program

(UNIX – Solaris)

% CC –o wheel –DSOLARIS wheeldriver.cpp wheel_library.cpp

(Windows)

C:> CL -Op -O1 -W1 -DMSWIN32 -Fewheel_library.exe wheel_library.cpp
wheeldriver.cpp

NOTE:  This example does not require any of the Standalone Library source files 
to be compiled and linked. If it did, you could add those files to the above 
command.
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3. If you get any link errors, specifically missing symbols, it is most likely that 
you need to compile and link an SA Library File. Determine which SA library 
file contains the function(s) (as per the link error message), and then compile 
and link with those files.

4. Run the program and some results will be output to the screen.

Driver Program (wheeldriver.cpp)

Example B-9 Driver Program (wheeldriver.cpp)

#include <stdlib.h>
#include <stdio.h>
#include "wheel_library.h"

typedef struct _wheeldata {
whl_velocity_proxy vel;
whl_motion_proxy motion;
whl_recoil_proxy recoil_data;

} WheelData;

int main()
{

WheelData wheels[4];
int i;
RT_FLOAT in1, in2;
RT_FLOAT vel, motion, recoil, area;
RT_FLOAT curTime;

srand(281);

curTime = 0.0;

while (curTime <= 5.0) {
in1 = (RT_FLOAT)(rand() / 450.5);
in2 = (RT_FLOAT)(rand() / 1004.25);

printf("TIME = %f\n", curTime);
for(i=0; i<4; i++) {

WheelData &whl = wheels[i];
in1 = in1 + (0.15*i);
in2 = in2 - (0.05*i);

whl.vel.Execute(in1, in2, &vel, curTime);
whl.motion.Execute(vel, &motion, curTime);
whl.recoil.Execute(vel, &recoil, &area, curTime);

printf("\tW%d\t%f\t%f\t%f\t%f\n",i,vel,motion,recoil,area);
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}
curTime = curTime + 0.125;

}

return 0;
}

B.8 Ada API

This section describes the generated Ada code of the Ada SDK template.

B.8.1 Logical Design

The logical design of the API consists of a package specification and body for each 
of the top-level procedures.

Package

A package is created that presents an API to the AutoCode generated procedure. 
The package name is of the form: procedurename_ext_pkg.

Interface Record

The record datatype is defined to support the execution of the procedure. The 
record based on the following “boilerplate” which describes the kinds of data 
found in this record:

type procedurename _ext_t is record
procedurename _i : procedurename _info_t;
procedurename _s_s : procedurename _s_t;

end record;

type procedurename _ext_t_P is
access procedurename _ext_t;

function ptr_of is new UNCHECKED_CONVERSION
(SOURCE => SYSTEM.ADDRESS,

TARGET => procedurename _ext_t_P);
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where procedurename is the name of the top-level procedure;

The structure contains the procedure’s INFO and STATE structures. For more 
information about these structures, see the AutoCode Reference. Depending on 
exactly what the procedure needs and/or optimizations you have used during 
code generation, these structures may or may not be present. Since this is a 
private data structure, there is no need to discuss its purpose or content any 
further.

Initialize Procedure

The purpose of this procedure is to initialize an instance of the procedure’s 
interface record. The procedure has the following signature. This procedure must 
be called once for each instance of the interface record and before any other API 
function.

procedure procedurename _Initialize(
idata : procedurename _ext_t_P

);

Execute( ) Function

This function is the calling interface from your code to the generated procedure. 
The function has the following “boilerplate” signature.

function procedurename _Execute(
U : in procedurename _u_t_P;
Y : in procedurename _y_t_P;
TIME : in RT_FLOAT;
idata : in procedurename _ext_t_P

) return RT_INTEGER;

or if using the AutoCode –nouy option

function procedurename _Execute(
u1 : in RT_ datatype ; [ u n : in RT_ datatype ;]
y1 : in RT_ datatype _P; [y n : in RT_ datatype _P;]
TIME : in RT_FLOAT;
idata : in procedurename _ext_t_P

) return RT_INTEGER;

where procedurename_u_t_P is the access pointer to the procedure’s input 
argument record, and procedurename_y_t_P is the access pointer to the procedure’s 
output argument record; TIME is the current simulated time measured from the 
start of the simulation.
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Depending on the exact number of inputs, outputs and if the current time is 
needed, the interface varies for each procedure. You must declare an instance of 
the input/output records and pass all necessary argument to this function to 
properly execute the procedure. The function returns an error code, 0 meaning no 
error, any other is an error that can be determined from predefined error codes in 
the sa_defn_.a SA-Library header file.

B.8.2 Physical Design (package feather_ext_pkg )

All package specifications and bodies for the AutoCode procedures and the API 
packages are generated in one output file.

B.8.3 Compilation and Link Details

The compilation and link details are specific to each Ada compiler. The process 
follows relatively the same steps used to compile the standalone simulation.

B.8.4 Example 5: Sample Code (Ada-SDK)

Example B-10 illustrates the API package specification and a sample driver 
program (Example B-11) that calls the procedure. The top-level discrete 
SuperBlock is named: interfaces and the top-level procedure is named: feather.

Package Specification

Example B-10 API Package Specification for feather_ext_pkg

with SA_TYPES; use SA_TYPES;
with SA_DEFN; use SA_DEFN;
with SYSTEM_DATA; use SYSTEM_DATA;
with SYSTEM;
with UNCHECKED_CONVERSION;
with feather_pkg; use feather_pkg;

package feather_ext_pkg is

type feather_ext_t is record
feather_i : feather_info_t;

end record;

type feather_ext_t_P is access feather_ext_t;
function ptr_of is new UNCHECKED_CONVERSION

(SOURCE => SYSTEM.ADDRESS, TARGET => feather_ext_t_P);
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procedure feather_Initialize( idata : in feather_ext_t_P );
function feather_Execute(

U : in feather_u_t_P;
Y : in feather_y_t_P;
idata : in feather_ext_t_P) return RT_INTEGER;

end feather_ext_pkg;

Driver Program

Example B-11 Driver Program for API Package Specification

with SA_TYPES; use SA_TYPES;
with feather_pkg; use feather_pkg;
with feather_ext_pkg; use feather_ext_pkg;
with TEXT_IO; use TEXT_IO;
procedure main is

package FLT_IO is new Float_IO(RT_FLOAT);
in : feather_u_t;
out : feather_y_t;
f_ext : feather_ext_t;

begin
feather_Initialize( ptr_of(f_ext’ADDRESS) );

for i in 1..20 loop
in.input_val := RT_FLOAT(i) / 8.5;
feather_Execute( ptr_of(in’ADDRESS), ptr_of(out’ADDRESS),

ptr_of(f_ext’ADDRESS));
FLT_IO.put(in.input_val);
FLT_IO.put(out.gain_out);

end loop;
end main;
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Sample AutoCode Output
This appendix shows the generated AutoCode output (in Example C-1) from the 
IfThenElse example shown in Chapter 9.

Example C-1 Generated Software from IfThenElse Model

/****************************************************************************
| AutoCode/C (TM) Code Generator 70mx0912
| WIND RIVER INC., SUNNYVALE, CALIFORNIA
*****************************************************************************

RTF filename : C:\WINNT\top.rtf
Filename : C:\WINNT\top.c
Generated on : Fri Sep 15 11:03:58 2000

Dac filename :
\\torque\mx70\NT\70mx0912\wini_70mx0912\case\ACC\templates\c_sim.dac
Dac file created on : Tue Sep 12 03:08:49 2000
Options : -l c

*****************************************************************************
--
-- Number of External Input : 1
-- Number of External Output: 2
--
-- Scheduler Frequency: 10.0
--
-- SUBSYSTEM FREQUENCY TIME_SKEW OUTPUT_TIME TASK_TYPE
-- --------- --------- --------- ----------- ---------
-- 1 10.0 0.0 0.0 PERIODIC
--
-- Number of Procedures : 2
--
-- Procedure Name Inputs Outputs INFO States
-- --------------------------------------------------------------
-- p1 YES YES YES NO
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-- p2 YES YES YES NO
--
****************************************************************************/

#include <stdio.h>
#include <math.h>
#include "sa_sys.h"
#include "sa_defn.h"
#include "sa_types.h"
#include "sa_math.h"
#include "sa_user.h"
#include "sa_utils.h"
#include "sa_time.h"
#include "sa_fuzzy.h"

/*** System Data ***/

/******* Structure to drive disconnected input/output. *******/

#define EPSILON 1.4901161193847656E-008
#define EPS (4.0 * EPSILON)
#define ABSTOL EPSILON
#define XREMAP 1

#define SCHEDULER_FREQ 10.0
#define NTASKS 1
#define NUMIN 1
#define NUMOUT 2
#define SCHEDULER_ID 0
#define PREEMPTABLE 2

enum TASK_STATE_TYPE { IDLE, RUNNING, BLOCKED, UNALLOCATED };

static RT_INTEGER ERROR_FLAG [NTASKS+1];
static RT_BOOLEAN SUBSYS_PREINIT [NTASKS+1];
static RT_BOOLEAN SUBSYS_INIT [NTASKS+1];
static enum TASK_STATE_TYPE TASK_STATE [NTASKS+1];

/******* System Ext I/O type declarations. *******/
struct _Subsys_1_out {

RT_FLOAT apple_out;
RT_FLOAT orange_out;

};

struct _Sys_ExtIn {
RT_FLOAT top_1;

};

/******* System Ext I/O type definitions. *******/
struct _Subsys_1_out subsys_1_out;
struct _Sys_ExtIn sys_extin;

static RT_FLOAT ExtIn [NUMIN+1];
static RT_FLOAT ExtOut [NUMOUT+1];
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/* Model variable definitions. */
VAR_FLOAT abcd;
VAR_FLOAT efg;

/******** Procedures’ declarations ********/

#ifndef p1_STRUCTS
#define p1_STRUCTS

/******* Procedure: p1 *******/

/***** Inputs type declaration. *****/
struct _p1_u {

RT_FLOAT p1_1;
};

/***** Outputs type declaration. *****/
struct _p1_y {

RT_FLOAT apple;
};

/***** Info type declaration. *****/
struct _p1_info {

RT_INTEGER iinfo[5];
};

#endif

void p1 (
struct _p1_u *U
, struct _p1_y *Y
, struct _p1_info *I
);

/**************************************************/

#ifndef p2_STRUCTS
#define p2_STRUCTS

/******* Procedure: p2 *******/

/***** Inputs type declaration. *****/
struct _p2_u {

RT_FLOAT p2_1;
};

/***** Outputs type declaration. *****/

struct _p2_y {

RT_FLOAT orange;

};

/***** Info type declaration. *****/
struct _p2_info {
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RT_INTEGER iinfo[5];
};

#endif

void p2 (
struct _p2_u *U
, struct _p2_y *Y
, struct _p2_info *I
);

/**************************************************/

/******** Procedures’ definitions ********/

/******* Procedure: p1 *******/

void p1( struct _p1_u *U
,struct _p1_y *Y
,struct _p1_info *I

)
{

RT_INTEGER *iinfo = &I->iinfo[0];

/***** Local Block Outputs. *****/

RT_FLOAT abcd_1;
RT_FLOAT p1_1_1;
RT_FLOAT p1_2_1;

/***** Output Update. *****/
/* ---------------------------- Read from Variable */
/* {p1..3} */
abcd_1 = abcd;
/* ---------------------------- Gain Block */
/* {p1..1} */
p1_1_1 = 22.0*U->p1_1;
/* ---------------------------- Summer */
/* {p1..2} */
p1_2_1 = p1_1_1 + abcd_1;
/* ---------------------------- Saturation */
/* {p1..13} */
Y->apple = MIN(MAX(-50.0,p1_2_1),50.0);

iinfo[1] = 0;

EXEC_ERROR: return;
}

/******* Procedure: p2 *******/
void p2( struct _p2_u *U

,struct _p2_y *Y
,struct _p2_info *I

)
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{
RT_INTEGER *iinfo = &I->iinfo[0];

/***** Local Block Outputs. *****/

RT_FLOAT abcd_1;
RT_FLOAT p2_1_1;
RT_FLOAT p2_2_1;

/***** Output Update. *****/
/* ---------------------------- Read from Variable */
/* {p2..3} */
abcd_1 = efg;
/* ---------------------------- Gain Block */
/* {p2..1} */
p2_1_1 = 15.0*U->p2_1;
/* ---------------------------- Summer */
/* {p2..2} */
p2_2_1 = p2_1_1 + abcd_1;
/* ---------------------------- Saturation */
/* {p2..13} */
Y->orange = MIN(MAX(-50.0,p2_2_1),50.0);

iinfo[1] = 0;
EXEC_ERROR: return;
}

/******** Tasks declarations ********/

/******* Subsystem 1 *******/
void subsys_1( struct _Sys_ExtIn *U, struct _Subsys_1_out *Y);

/******** Tasks code ********/

/******* Subsystem 1 *******/

void subsys_1( struct _Sys_ExtIn *U

,struct _Subsys_1_out *Y
)
{

static RT_INTEGER iinfo[4];

/***** Local Block Outputs. *****/

RT_FLOAT abcd_1;
RT_FLOAT efg_1;
static struct _p1_u p1_99_u;
static struct _p1_y p1_99_y;
static struct _p1_info p1_99_i;
static struct _p2_u p2_23_u;
static struct _p2_y p2_23_y;
static struct _p2_info p2_23_i;
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static struct _p1_u p1_21_u;
static struct _p1_y p1_21_y;
static struct _p1_info p1_21_i;
static struct _p2_u p2_4_u;
static struct _p2_y p2_4_y;
static struct _p2_info p2_4_i;
static struct _p2_u p2_22_u;
static struct _p2_y p2_22_y;
static struct _p2_info p2_22_i;
static struct _p1_u p1_14_u;
static struct _p1_y p1_14_y;
static struct _p1_info p1_14_i;

/******* Initialization. *******/

if (SUBSYS_PREINIT[1]) {
iinfo[0] = 0;
iinfo[1] = 1;
iinfo[2] = 1;
iinfo[3] = 1;
p1_99_i.iinfo[0] = iinfo[0];
p1_99_i.iinfo[3] = iinfo[3];
p2_23_i.iinfo[0] = iinfo[0];
p2_23_i.iinfo[3] = iinfo[3];
p1_21_i.iinfo[0] = iinfo[0];
p1_21_i.iinfo[3] = iinfo[3];
p2_4_i.iinfo[0] = iinfo[0];
p2_4_i.iinfo[3] = iinfo[3];
p2_22_i.iinfo[0] = iinfo[0];
p2_22_i.iinfo[3] = iinfo[3];
p1_14_i.iinfo[0] = iinfo[0];
p1_14_i.iinfo[3] = iinfo[3];
SUBSYS_PREINIT[1] = FALSE;
return;

}

/***** Output Update. *****/
/* ---------------------------- Read from Variable */
/* {top..1} */
abcd_1 = abcd;
/* ---------------------------- Read from Variable */
/* {top..11} */
efg_1 = efg;

/* ---------------------------- IfThenElse */
/* {top..2} */
if( abcd_1 >= 10.0 ) {

/* ---------------------------- Procedure Super Block */
/* {p1.99} */
p1_99_u.p1_1 = U->top_1;
p1(&p1_99_u, &p1_99_y, &p1_99_i);
Y->apple_out = p1_99_y.apple;
iinfo[0] = p1_99_i.iinfo[0];
if( iinfo[0] != 0 ) {
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p1_99_i.iinfo[0] = 0; goto EXEC_ERROR;
}

}

else if( abcd_1 <= 1.0 ) {

/* ---------------------------- Procedure Super Block */
/* {p2.23} */
p2_23_u.p2_1 = U->top_1;
p2(&p2_23_u, &p2_23_y, &p2_23_i);
Y->orange_out = p2_23_y.orange;
iinfo[0] = p2_23_i.iinfo[0];
if( iinfo[0] != 0 ) {

p2_23_i.iinfo[0] = 0; goto EXEC_ERROR;
}

}
else if( abcd_1 > 10.0 && abcd_1 < 1.0 || (efg_1 == 1.0) ) {

/* ---------------------------- Procedure Super Block */
/* {p1.21} */
p1_21_u.p1_1 = U->top_1;
p1(&p1_21_u, &p1_21_y, &p1_21_i);
Y->apple_out = p1_21_y.apple;
iinfo[0] = p1_21_i.iinfo[0];
if( iinfo[0] != 0 ) {

p1_21_i.iinfo[0] = 0; goto EXEC_ERROR;
}

/* ---------------------------- Procedure Super Block */
/* {p2.4} */
p2_4_u.p2_1 = U->top_1;
p2(&p2_4_u, &p2_4_y, &p2_4_i);
Y->orange_out = p2_4_y.orange;
iinfo[0] = p2_4_i.iinfo[0];
if( iinfo[0] != 0 ) {

p2_4_i.iinfo[0] = 0; goto EXEC_ERROR;
}

}
else {

/* ---------------------------- Procedure Super Block */
/* {p2.22} */
p2_22_u.p2_1 = U->top_1;
p2(&p2_22_u, &p2_22_y, &p2_22_i);
Y->orange_out = p2_22_y.orange;

iinfo[0] = p2_22_i.iinfo[0];
if( iinfo[0] != 0 ) {

p2_22_i.iinfo[0] = 0; goto EXEC_ERROR;
}

/* ---------------------------- Procedure Super Block */
/* {p1.14} */
p1_14_u.p1_1 = U->top_1;
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p1(&p1_14_u, &p1_14_y, &p1_14_i);
Y->apple_out = p1_14_y.apple;
iinfo[0] = p1_14_i.iinfo[0];
if( iinfo[0] != 0 ) {

p1_14_i.iinfo[0] = 0; goto EXEC_ERROR;
}

}

if(iinfo[1]) {
SUBSYS_INIT[1] = FALSE;
iinfo[1] = 0;

}
return;

EXEC_ERROR: ERROR_FLAG[1] = iinfo[0];
iinfo[0]=0;

}

/*******************************************
** Initialize global data such as:
** Scheduler data (subsytem code only)
** Variable Blocks
** %vars
** Subsystem I/O
*******************************************/
void Init_Application_Data ()
{

RT_INTEGER cnt;

/* Declare %var/varblk initialization data */

/* Variable blocks initialization. */
abcd = 0.0;
efg = 0.0;

/* Subsystem outputs initialization. */
subsys_1_out.apple_out = -EPSILON;
subsys_1_out.orange_out = -EPSILON;

for( cnt=0; cnt<NUMOUT; cnt++ ){
ExtOut[cnt] = -EPSILON;

}

SUBSYS_PREINIT[1] = SUBSYS_INIT[1];
subsys_1(&sys_extin, &subsys_1_out);

}

/*---------------*
*-- SCHEDULER --*
*---------------*/

/*** Scheduler Data ***/
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enum SUBSYSTEM_TYPE { CONTINUOUS, PERIODIC, ENABLED_PERIODIC,
TRIGGERED_ASYNC, TRIGGERED_ANT, TRIGGERED_ATR,
TRIGGERED_SAF, ECHART, NONE };

static const enum SUBSYSTEM_TYPE TASK_TYPE [NTASKS+1] =
{NONE, PERIODIC};

static const enum TASK_STATE_TYPE INITIAL_TASK_STATE [NTASKS+1] =
{UNALLOCATED, IDLE};

static const RT_INTEGER START_COUNT [NTASKS+1] =
{0, 0};

static const RT_INTEGER SCHEDULING_COUNT [NTASKS+1] =
{0, 0};

static const RT_INTEGER OUTPUT_COUNT [NTASKS+1] =
{0, 0};

static long int TIME_COUNT;
static RT_INTEGER TSK;
static RT_INTEGER SCHEDULER_STATUS;
static RT_INTEGER CURRENT_PRIORITY = NTASKS+1;
static RT_INTEGER LEVEL = 0;
static RT_INTEGER READY_COUNT;
static RT_INTEGER READY_QUEUE [NTASKS+1];
static RT_BOOLEAN DISPATCH [NTASKS+1];
static RT_INTEGER PRIORITY [NTASKS+1];
static volatile RT_INTEGER DISPATCH_COUNT;

struct TCB_TYPE
{

enum SUBSYSTEM_TYPE TASK_TYPE;
RT_BOOLEAN ENABLED;
RT_INTEGER START;
RT_INTEGER START_COUNT;
RT_INTEGER SCHEDULING_COUNT;
RT_INTEGER OUTPUT;
RT_INTEGER OUTPUT_COUNT;
RT_BOOLEAN DS_UPDATE;
RT_BOOLEAN EDGE_TRIGGER;

};
static struct TCB_TYPE TCB [NTASKS+1];

/* Work area side indices for subsystems. */
static RT_INTEGER SSWORKSIDE [NTASKS+1];
static RT_INTEGER SSREADSIDE;

unsigned short SCHEDULER_STATE;

#define Queue_Task(NTSK) \
READY_COUNT++; \
READY_QUEUE[READY_COUNT] = NTSK; \
DISPATCH[NTSK] = TRUE; \
TASK_STATE[NTSK] = RUNNING

#define Signal_An_Error(NTSK) \
if( ERROR_FLAG[NTSK] == OK ) Error( NTSK, TIME_OVERFLOW ); \
else Error( NTSK, ERROR_FLAG[NTSK] ); \
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void Update_Outputs( RT_INTEGER NTSK )
{

SSREADSIDE = SSWORKSIDE[NTSK];
SSWORKSIDE[NTSK] = 1 - SSREADSIDE;
switch(NTSK) {

default:
break;

}
return;

}

void System_Extin_Copy() {
sys_extin.top_1 = ExtIn[0];

}

void System_Extout_Copy() {
ExtOut[0] = subsys_1_out.apple_out;
ExtOut[1] = subsys_1_out.orange_out;

}

void Update_DS_With_Externals() {

}

void Init_Scheduler()
{

RT_INTEGER NTSK;
for( NTSK=1; NTSK<=NTASKS; NTSK++ ) {

TCB[NTSK].TASK_TYPE = TASK_TYPE[NTSK];
TCB[NTSK].ENABLED = FALSE;
TCB[NTSK].START = START_COUNT[NTSK];
TCB[NTSK].START_COUNT = START_COUNT[NTSK];
TCB[NTSK].SCHEDULING_COUNT = SCHEDULING_COUNT[NTSK];
TCB[NTSK].OUTPUT = OUTPUT_COUNT[NTSK];
TCB[NTSK].OUTPUT_COUNT = OUTPUT_COUNT[NTSK];
TCB[NTSK].EDGE_TRIGGER = FALSE;
TASK_STATE[NTSK] = INITIAL_TASK_STATE[NTSK];
DISPATCH[NTSK] = FALSE;
ERROR_FLAG[NTSK] = 0;
SUBSYS_INIT[NTSK] = TRUE;
if(TASK_TYPE[NTSK]==TRIGGERED_ATR || TASK_TYPE[NTSK]==TRIGGERED_SAF ||

TASK_TYPE[NTSK]==TRIGGERED_ASYNC){
SSWORKSIDE[NTSK] = 0;
TCB[NTSK].DS_UPDATE = TRUE;

} else {
SSWORKSIDE[NTSK] = 1;
TCB[NTSK].DS_UPDATE = FALSE;

}
}
DISPATCH_COUNT = 0;
CURRENT_PRIORITY = NTASKS+1;
READY_COUNT = 0;
READY_QUEUE[0] = 0;
READY_QUEUE[1] = 0;
SSWORKSIDE[0] = 0;
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ERROR_FLAG[0] = 0;
DISPATCH[0] = FALSE;
SUBSYS_INIT[0] = FALSE;
SCHEDULER_STATUS = OK;
TIME_COUNT = -1;

}

void SCHEDULER()
{

register RT_INTEGER NTSK;
register RT_INTEGER I;

RT_INTEGER ITSK;

TIME_COUNT = TIME_COUNT + 1;

/*** System Input ***/

SCHEDULER_STATUS = External_Input();

System_Extin_Copy();

if( SCHEDULER_STATUS != OK ){
return;

}

/*** Clear Ready Queue ***/

READY_COUNT = 0;
READY_QUEUE[1] = 0;

/*** Task Scheduling ***/

for( NTSK=NTASKS; NTSK>=1; NTSK-- ){

switch( TASK_STATE[NTSK] ){
case IDLE :

switch( TCB[NTSK].TASK_TYPE ){
case CONTINUOUS :
case PERIODIC :

if( TCB[NTSK].START == 0 ){
Queue_Task(NTSK);
Update_Outputs(NTSK);
TCB[NTSK].START = TCB[NTSK].SCHEDULING_COUNT;

} else {
TCB[NTSK].START = TCB[NTSK].START - 1;

}
break;

case ENABLED_PERIODIC :
if( !TCB[NTSK].ENABLED ){

TASK_STATE[NTSK] = BLOCKED;
}else if( TCB[NTSK].START == 0 ){

Queue_Task(NTSK);
Update_Outputs(NTSK);
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TCB[NTSK].START = TCB[NTSK].SCHEDULING_COUNT;
}else{

TCB[NTSK].START = TCB[NTSK].START - 1;
}
break;

case TRIGGERED_ASYNC :
if( TCB[NTSK].OUTPUT == 0 ){

Update_Outputs(NTSK);
TASK_STATE[NTSK] = BLOCKED;
if( TCB[NTSK].START == 0 ){

Queue_Task(NTSK);
TCB[NTSK].START = 1;

}
}
break;

case TRIGGERED_ANT :
if( TCB[NTSK].START == 0 ){

Queue_Task(NTSK);
Update_Outputs(NTSK);
TCB[NTSK].START = 1;

}
break;

case TRIGGERED_ATR :
if( TCB[NTSK].OUTPUT == 0 ){

Update_Outputs(NTSK);
TASK_STATE[NTSK] = BLOCKED;
if( TCB[NTSK].START == 0 ){

Queue_Task(NTSK);
TCB[NTSK].OUTPUT = TCB[NTSK].OUTPUT_COUNT;
TCB[NTSK].START = 1;

}
} else {

TCB[NTSK].OUTPUT = TCB[NTSK].OUTPUT - 1;
}
break;

case TRIGGERED_SAF :
if( TCB[NTSK].OUTPUT == 0 ){

Update_Outputs(NTSK);
TASK_STATE[NTSK] = BLOCKED;
if( TCB[NTSK].START == 0 ){

queue_task(NTSK);
TCB[NTSK].START = 1;

}
} break;

}
break;

case RUNNING :
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switch( TCB[NTSK].TASK_TYPE ){
case CONTINUOUS :
case PERIODIC :

if( TCB[NTSK].START > 0 ){
TCB[NTSK].START = TCB[NTSK].START - 1;

} else {
Signal_An_Error(NTSK);
return;

}
break;

case ENABLED_PERIODIC :
if( TCB[NTSK].START > 0 ){

TCB[NTSK].START = TCB[NTSK].START - 1;
} else {

Signal_An_Error(NTSK);
return;

}
break;

case TRIGGERED_ASYNC :
if( ERROR_FLAG[NTSK] != 0 ){

Signal_An_Error(NTSK);
return;

}
break;

case TRIGGERED_ANT :
if( TCB[NTSK].START == 0 ){

Signal_An_Error(NTSK);
return;

}
break;

case TRIGGERED_ATR :
if(( TCB[NTSK].OUTPUT > 0 ) && (TCB[NTSK].START > 0)) {

TCB[NTSK].OUTPUT = TCB[NTSK].OUTPUT - 1;
} else {

Signal_An_Error(NTSK);
return;

}
break;

case TRIGGERED_SAF :
if( ERROR_FLAG[NTSK] != 0 ){

Signal_An_Error(NTSK);
return;

}
break;

}
break;

case BLOCKED :

switch( TCB[NTSK].TASK_TYPE ){
case ENABLED_PERIODIC :
213



MATRIXX 7.0
AutoCode User’s Guide
if( TCB[NTSK].ENABLED ){
Queue_Task(NTSK);
Update_Outputs(NTSK);
TCB[NTSK].START = TCB[NTSK].SCHEDULING_COUNT;

}
break;

case TRIGGERED_ASYNC :
if( TCB[NTSK].START == 0 ){

Queue_Task(NTSK);
TCB[NTSK].START = 1;

}
break;

case TRIGGERED_ATR :
if( TCB[NTSK].START == 0 ){

Queue_Task(NTSK);
TCB[NTSK].OUTPUT = TCB[NTSK].OUTPUT_COUNT;
TCB[NTSK].START = 1;

}
break;

case TRIGGERED_SAF :
if( TCB[NTSK].START == 0 ){

Queue_Task(NTSK);
TCB[NTSK].START = 1;

}
break;

}
break;

}
}

/*** System Output ***/

Update_DS_With_Externals();

System_Extout_Copy();

SCHEDULER_STATUS = External_Output ();

/*** Task Input Sample and Hold ***/

for( I=READY_COUNT; I>=1; I-- ){
TSK = READY_QUEUE[I];
switch (TSK){

case 1:

break;
default:

break;
}

}

/*** Signal End of Critical Section ***/
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if( READY_COUNT > 0 ){
if( READY_QUEUE[1] > DISPATCH_COUNT ){

DISPATCH_COUNT = READY_QUEUE[1];
}
ITSK = READY_QUEUE[READY_COUNT];
SCHEDULER_STATE = PREEMPTABLE;

}else{
SCHEDULER_STATE = PREEMPTABLE;
return;

}

/*** Task Dispatching ***/

while( ITSK < CURRENT_PRIORITY && ITSK <= DISPATCH_COUNT ){
Disable;
if( DISPATCH[ITSK] ){

LEVEL++;
PRIORITY[LEVEL] = CURRENT_PRIORITY;
CURRENT_PRIORITY = ITSK;
DISPATCH[ITSK] = FALSE;
Enable;
switch (ITSK){

case 1 :
subsys_1(&sys_extin, &subsys_1_out);
break;

default : break;
}
Disable;
if( ERROR_FLAG[ITSK] == OK ){

TASK_STATE[ITSK] = IDLE;
}
CURRENT_PRIORITY = PRIORITY[LEVEL];
LEVEL--;

}
Enable;
ITSK++;

}
if( ITSK > DISPATCH_COUNT ){

DISPATCH_COUNT = 0;
}

}

/*----------*
*-- MAIN --*
*----------*/

main()
{

/*** Initialize Scheduler ***/

Init_Scheduler();

/* Initialize Application Data */

Init_Application_Data();
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/*** User Initialization ***/

Implementation_Initialize (&ExtIn[0], NUMIN, &ExtOut[0], NUMOUT,
SCHEDULER_FREQ);

/*** Start Scheduler ***/
SCHEDULER_STATUS = Background ();

/*** User Termination ***/

Implementation_Terminate();

exit(0);
}

NOTE:  This example is quite long, but it illustrates one of the key advantages of 
AutoCode. This entire C file is generated from one top-level block.  The length of 
this file helps to contrast the benefits of generating code from a model versus hand-
coding. The logic of the code will be a reflection of the logic of the model.
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$env_var 19
%env_var% 19

A
ac_timing option 29
acmake 28, 58
Ada code 176
ada_intgr.tpl 113
ada_rt.tpl 113
ada_sdk.tpl 176
Advanced dialog 21
algebraic loops 18, 113
algorithmic procedures 12
allgscope option 161
application program 59
arraymin option 161
asynchronous subsystems 74, 78

background procedure 79, 82
interrupt procedure 79, 82
procedures 78
start-up procedure 79
triggered 81

AutoCode
automatic code generation 6, 8
blocks 143

BlockScript 140
global variable blocks 148
IfThenElse 150
local variable blocks 149
sequencing 154
Standard Procedure SuperBlocks 148
UCB 143
UserCode Blocks 143
variable blocks 148
While 154

command options 16, 17
configuration options 139, 140
customizing process 139
generated code applications 25
generated reusable procedures 12
invoking 5
model limitations 18
model restrictions 18
options

see individual option names. 161
options file 169
real-time application 9, 11
sequence for using 5
simulation 5
Tools Menu pulldown 18
Xmath command, autocode 18, 21

autocode command 161
examples 16
options 16

autostar command 15, 161
217



MATRIXX 7.0
AutoCode User’s Guide
example command for Ada 117
example command for C 117
examples 17
options 17

autostar.opt 169
aux clock 132

B
background function 11, 60
backpmap option 161
block sequencing 154
blocked state 64, 67, 71
BlockScript 11, 139, 140
bubble diagram 63
build

full 28, 58
incremental 28, 58

C
C code 176
C++ code 176
c_core.tpl 176
c_sdk.tp 176
c_sdk_m.tpl 176
c_sdkcore.tpl 176
categories of discrete systems 99
code generation 18

automatic 5
continuous systems 111

generated code sample - Ada 123
generated code sample - C 117
hints 127
how to generate 113
implicit frequency 115
limitations 113

customize 5
discrete systems 99

example Ada code 106
example C code 102
optimized code 101

procedural code 101
vectorized code 100

from OS
for continuous systems 116
for discrete systems 17

from within SystemBuild
for discrete systems 16

from Xmath
for continuous systems 114, 176
for discrete systems 16

hybrid systems
how to generate 113

code-comment tokens
limitations 146
using 145

compiling and linking 27
computational thread 60
config option 162
configuration file 169
configuration options 140
continuous code generation

integrators 112
limitations 113

continuous subsystem 53, 66, 67
continuous systems 66

code generation
from OS 116
from Xmath 114, 176

generated code sample - Ada 123
generated code sample - C 117
generating code 113
hints 127
implicit frequency 115
integrator 66, 111, 112

continuous-time model 5
cpp_core.tpl 177
cpp_sdk.tpl 176
cpp_sdk_m.tpl 177
CPU task utilization 59
critical section (scheduler) 60, 69
csi 176
csi - standalone 115
csi option 162
Ctrl-G 20
customizing AutoCode 139
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data parameterization 142
discrete systems

categories 99
discrete time points 29
discrete-time

controller SuperBlocks 5
dispatch list 63, 67
dispatcher 10, 63, 64, 69, 83
division by zero 162
-DMSWIN32 194
doublebuf option 162
double-buffered outputs 70
–DSOLARIS 194

E
elapsed time counter 69
enable signal 60, 66, 71, 73
enabled periodic subsystem as a state machine 71
enabled periodic subsystems 61, 68, 71
enabled subsystems 67
epinfo option 162
epsilon option 162
epsilon_r 162
errcheck option 162
errors

customizing overflow handling 97
scheduler 95

subsystem overflow 95
examples

autocode command 16
autostar command 17
generated code (continuous) - Ada 123
generated code (continuous) - C 117

extended time [te,ye] 29

F
file option 162
files

ada_intgr.tpl 113
ada_rt.tpl 113
c_intgr.tpl 113
c_sim.tpl 113
sa_utils.<hll> 26
utilities

standalone 26
finite state machine 63, 69
first sample

See skew
fixed-point demo 32
fixed-point.dat 32
fmarker option 163
foverflow option 163
free-running periodic subsystem 60, 61, 66, 67, 70

as a state machine 70
full build 28, 58

G
gencode.bat 130
generated application 3

compiling 27, 32, 39, 40, 48
components 10
implementing 7
nature of 9

generated code
applications 25
comparing with sim results 29
compile and link 5
keywords 29
validate 6

generated code applications 25
generated program

passing control 63
generating code 18

customizing 21
generating real-time code 15
glbvarblkopt option 163
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H
hardware in-the-loop testing 7
help system 12
high-level language

Ada 3
C 3
code 5, 15

hints
continuous systems 127

hybrid system 66
generating code 113

I
I/O routines 11
ialg 176
ialg option 163
IALG options 23
ID (subsystems) 68
idle state 66, 67, 70
IfThenElse block 150
implicit frequency 115
increasing SIMNT memory size 134
incremental build 28, 58
indent option 163
initmerge option 164
input names 48
integrating generated code 31
integrator 66, 111, 112

first order Runge-Kutta 112
fourth order Runge-Kutta 112
Kutta-Merson 112
second order Runge-Kutta 112
user-supplied 112

interpmap option 164
interrupt handler 11, 60
interrupts 61
ipath option 164

K
krstyle option 164

L
label names 48
language option 164
latched outputs 70, 94
least common multiple rate 92
limitations 18
linesz option 164
linking 27, 32, 39, 40, 48
locvarblkopt option 164
loopmin option 164

M
Macro Procedure block 143
main.cpp 193
major cycle 71
makefile generation 8
makefile.cmdline 130
manager/scheduler 9, 63
mapfile option 164
mapping

subsystems to processors 173
command line 174
pmap option 174

MATRIXX
AutoCode 4
product family 3

minimum scheduler cycle 64
Minmax Display tool 34
minor cycle 64, 68, 71, 91
minsf 176
minsf option 165
model

testing 7
model simulation

running applications 29
time vectors 29
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namelen option 165
negative-going edge (trigger) 74
nobusmap_b token 165
nodiscon option 165
noerr option 165
nogscope option 165
noinfo option 165
nomap option 165
norestart option 165
nosmooth option 165
–nouy 189
nouy option 165
numproc option 166

O
offset

(see skew)
online help 12
optimization 132
optimized code

types of optimization 101
options file 169
options option 166
organization

manual 1
OS command options

-csi 116
-minsf 116

output posting
ANT 74, 77
ASYNC 75
ATR 74, 77
SAF 77

overflow (scheduler) 95
overflow (subsystem) 95
overflow (timing) 83

P
parameterization 5, 142

variables 139
parname option 166
periodic task subsystems 59

repetition rate 59
periodicity 93
pmap option

example 174
positive-going edge (trigger) 74
pre-emption 83
prio option

example 172
priomap option 166
priorities, task 171
procs_only option 166
propconst option 166
pseudo-rate scheduler 91, 92, 94

R
rapid prototyping 2, 5, 7, 30
rate-monotonic

algorithm 59
scheduling 59

ready queue 66, 67, 83
real-time

application 11
application program 59
code 3
file 15, 17
generating code 5, 15, 32
simulation 31

re-entrant dispatcher 69
related publications 13
repetition rate 91
resettable integrator 144
restrictions 18
reusable procedures

AutoCode-generated 12
reuse option 166
roundfloat option 166
rtf option 15, 17, 167
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rtos option 167
rtosfile option 167
running 32, 39, 40, 48

state 70

S
sa_defn_.a 198
SAF (as-soon-as-finished) trigger 77
sample and hold 60, 66, 69, 83
sample rate 59, 60
sampling rate 64, 67, 91
scheduler 9, 11, 59, 63, 64

critical section 60, 69
dispatch list 67
dispatcher 69, 83

re-entrant 69
elapsed time counter 69
errors 95
example timing diagram 91
examples 84
major cycle 71
minimum cycle 64
minor cycle 64, 68, 71, 91
periodicity 93
pre-emption 83
pseudo-rate 91, 92, 94
rate-monotonic 59
ready queue 66, 67, 83
repetition rate 91
sampling rate 91
scheduler overflow 95
skew 93
subsystem overflow 95

causes 97
timing overflow 66
timing overflow (subsystem) 83
timing requirement 91

scheduler operation 65
scheduler option 167
sd option 167
sequencing block 154
setsbdefault command 29
sim...{initmode} command 70

simulation
options 29
real-time 31

skew 60, 93
example 93
setting

skew option 173
skew option

example 173
skewmap option 167
smcallout option 167
software constructs 147

example model 155
generated code 155, 201

standalone simulation 26, 28
set up environment variables 28

standalone utility file 5, 11, 26
sa_utils.<hll> 26

Standard Procedure SuperBlocks 148
startpmap option 168
state machine 63
state transition diagram (STD) 69, 70
subsysmap option 168
subsystem

processor subsystem map
command 174

subsystems 10, 60
ATR 68
constraints 83
continuous 66, 67
controlling execution 171
dispatch list 67
dispatching 83
dispatching and pre-emption example 84
dispatching operation with a pseudo-rate 

scheduler 92
enabled periodic 61, 67, 68, 71

as state machine 71
execution queue 80
free-running periodic 60, 61, 66, 67, 70

as state machine 70
least common multiple 92
mapping options 171
minor cycle 68
overflow 95
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periodicity 93
pre-emptible 61
processor subsystem map 173
pseudo-rate 92, 94
ready queue 66, 67, 83
running under simulation 71
sampling rate 67, 91
scheduler examples 84
scheduling 71
setting priorities

automatic 171
using the prio option 171

skew 93
example 93
setting 173

state 64
blocked 64, 67, 71
idle 66, 67, 70
running 70

task ID
NTASKS 68

timing diagram 73
timing overflow 66, 83
timing requirement 67, 91
triggered 61, 66

(ASAF or SAF) 75
as state machines 76, 77
output posting (SAF) 75

triggered ANT 68
triggered ASAF 68
triggered asynchronous 74

super_cruise.data 133
SuperBlock

top-level 30
system 16
SystemBuild 5

T
target processor 7, 29
target type

I80486 129
PPC604 129

SIMNT 129
target-specific utilities 26
task 60
task priorities 171
te,ye extended time 29
template 140

command parameters 21
programming language (see tpl) 140
tpl program 21, 139

template program 9, 11
template programming language

(see tpl)
testing a model 7
time vectors 29
timer interrupt handler 11
timing

overflow 66, 83
requirement 67, 91

timing diagram 73
timing properties 94
timing window 72
top-level SuperBlock 30
Tornado 2 2, 129
tpl 140

files
ada_intgr.tpl 113
ada_rt.tpl 113
c_intgr.tpl 113
c_sim.tpl 113

program 139
tpl programming language 21
tpldac option 168
tplsrc option 168
trigger 60
triggered as-soon-as-finished subsystems 68
triggered asynchronous 68
triggered asynchronous subsystems 74
triggered at-next-trigger subsystems 68
triggered at-timing-requirement subsystems 68
triggered subsystems 61, 66
triggered subsystems as state machines 76, 77
triggered task subsystems 59

timing requirement 59
typecheck option 168
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U
UCB 11, 143
ucbparams option 168
UserCode Block 143

(see UCB)
usrData.h 129
utilities

target-specific 26

V
variable blocks 148

global 148
local 149

vars option 169
vbcallout option 169
vectorized code

variations 100
vectormode option 169
VxWorks 129

template 2, 129
usage notes 136

W
wheeldriver.c 177, 186
wheeldriver.cpp 177, 194
wheellib.cat 177, 194

X
Xmath

generating code from 16
variables 142

Z
ZeroCrossing blocks 144
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