
7.0MATRIXX
A U T O C O D E U S E R ’S G U I D E

®

®

Copyright � 2000 Wind River Systems, Inc.

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy,
microfilm, retrieval system, or by any other means now known or hereafter invented without the prior
written permission of Wind River Systems, Inc.

AutoCode, Embedded Internet, ESp, FastJ, IxWorks, MATRIXX, pRISM, pRISM+, pSOS, RouterWare,
Tornado, VxWorks, wind, WindNavigator, Wind River Systems, WinRouter, and Xmath are registered
trademarks or service marks of Wind River Systems, Inc.

BetterState, Doctor Design, Embedded Desktop, Envoy, How Smart Things Think, HTMLWorks,
MotorWorks, OSEKWorks, Personal JWorks, pSOS+, pSOSim, pSOSystem, SingleStep, SNiFF+, VxDCOM,
VxFusion, VxMP, VxSim, VxVMI, Wind Foundation Classes, WindC++, WindNet, Wind River, WindSurf,
and WindView are trademarks or service marks of Wind River Systems, Inc. This is a partial list. For a
complete list of Wind River trademarks and service marks, see the following URL:

http://www.windriver.com/corporate/html/trademark.html

Use of the above marks without the express written permission of Wind River Systems, Inc. is prohibited.
All other trademarks mentioned herein are the property of their respective owners.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): 800/545-WIND
telephone: 510/748-4100
facsimile: 510/749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

MATRIXX AutoCode User’s Guide, 7.0
Edition 1
1 Nov 00
Part #: 000-0066-009

Contents
1 Introduction .. 1

1.1 Manual Organization ... 1

1.2 Rapid Prototyping Concept .. 2

1.3 Automatic Code Generation Process ... 5

1.4 Using AutoCode with BetterState .. 7

1.5 Profile of the Generated Program .. 9

1.6 AutoCode-Generated Reusable Procedures ... 12

1.7 Using MATRIXX Help .. 12

1.8 Related Publications ... 13

2 Using AutoCode ... 15

2.1 How to Generate Real-Time Code ... 15

2.1.1 Generating Code from Within SystemBuild 16

2.1.2 Generating Code from Xmath .. 16

2.1.3 Generating Code from the Operating System 17

2.1.4 Limitations/Restrictions ... 18
iii

MATRIXX 7.0
AutoCode User’s Guide
2.2 Generating Non-Customized Code ... 19

2.3 Generating Customized Code .. 21

2.4 Using Templates ... 24

2.5 Applications of AutoCode-Generated Code .. 25

2.5.1 Standalone Simulation .. 26

Standalone Simulation .. 28

2.5.2 Simulation Options ... 29

2.5.3 Rapid Prototyping ... 30

2.5.4 Real-Time Simulation .. 31

2.5.5 Implement Embedded Real-Time Control 31

2.6 How to Integrate Generated Code into Your Target 31

2.6.1 Loading the Fixed-Point Demo ... 32

2.6.2 Determining System Scaling .. 34

2.6.3 Modular Programming ... 37

2.6.4 Comparing the Output ... 40

2.6.5 Implementation .. 41

2.6.6 Optimizations ... 43

2.6.7 Integration and Test ... 44

2.7 How to Write Production Quality Code (Graphically) 45

2.7.1 Graphical Solutions ... 46

Design Abstractions .. 46
Code Abstractions ... 47

2.7.2 Labels and Names ... 48

2.7.3 Modular Programming Through Procedures 49

3 Using AutoCode with BetterState ... 53

3.1 Procedural and Event-Driven BetterState Charts 53
iv

Contents
3.2 Generating Code for a BetterStateChart Block ... 54

3.2.1 Handling BetterState Charts That Call Procedures 57

3.2.2 Handling BetterState Charts That Read or Write Variable Blocks 57

3.3 Using BlockScript User Code ... 58

4 Managing and Scheduling Applications .. 59

4.1 Real-Time Application Scheduler .. 59

4.1.1 Subsystems .. 60

4.1.2 Flow of Control in the Generated Program 61

4.2 Sequence of Scheduler Operations .. 63

4.3 Properties of Scheduled Subsystems ... 69

4.3.1 Free-Running Periodic Subsystems ... 70

4.3.2 Enabled Periodic Subsystems .. 71

4.3.3 Triggered Subsystems ... 74

4.4 Properties of Asynchronous Subsystems .. 78

4.4.1 Start-up Procedure ... 79

4.4.2 Asynchronous Trigger Subsystems ... 81

4.4.3 Interrupt Procedure ... 82

4.4.4 Background Procedure .. 82

4.5 Reentrancy and Preemption: The Dispatcher .. 83

4.6 Scheduler Examples ... 84

4.6.1 Dispatching and Pre-emption Example .. 84

4.6.2 Pseudo-Rate Scheduler ... 91

4.6.3 Operating with Skew ... 93

4.7 Scheduler Errors ... 95

4.7.1 Scheduler or Subsystem Overflow .. 95
v

MATRIXX 7.0
AutoCode User’s Guide
4.7.2 Examples Where Overflow is Irrelevant or Cannot Happen 96

5 Code Generation for Discrete Systems ... 99

5.1 Introduction .. 99

5.2 How to Generate Code for Discrete Systems ... 100

5.3 Introduction to Vectorized Code .. 100

5.4 Introduction to Optimized Code ... 101

5.5 Introduction to Procedural Code ... 101

5.6 Sample Generated Code ... 102

5.6.1 Sample C Code ... 102

5.6.2 Sample Ada Code .. 106

6 Code Generation for Continuous Systems .. 111

6.1 Introduction .. 111

6.2 Integrators ... 112

6.3 Limitations .. 113

6.4 How to Generate Code for Continuous or Hybrid Systems 113

6.4.1 Generating Code for Continuous Systems from SystemBuild ... 114

6.4.2 Xmath Command Options for Continuous Code Generation 114

6.4.3 OS Command Options for Continuous Code Generation 115

6.5 Sample Generated C Code .. 117

6.6 Sample Generated Ada Code ... 123

6.7 Hints ... 127

7 Using VxWorks with AutoCode ... 129
vi

Contents
7.1 Template Features .. 129

7.2 Generating Code ... 130

7.3 Code Testing Method ... 131

7.4 Increasing SIMNT Memory Size .. 134

7.5 Usage Notes .. 136

8 Customizing AutoCode and Generated Code ... 139

8.1 Introduction .. 139

8.2 AutoCode Configuration Options ... 140

8.3 Templates ... 140

8.4 BlockScript Block .. 140

8.5 Data Parameterization ... 142

8.6 UserCode Block .. 143

8.7 Macro Procedure Block .. 143

8.8 ZeroCrossing Blocks and Resettable Integrators ... 144

8.9 User-Defined Code Comments .. 144

8.9.1 Using a User-Defined Code Comment ... 145

8.9.2 Limitations .. 146

9 Introduction to Software Constructs with AutoCode 147

9.1 Introduction .. 147

9.2 Standard Procedure SuperBlocks ... 148

9.3 Variable Blocks .. 148

9.3.1 Global ... 148
vii

MATRIXX 7.0
AutoCode User’s Guide
9.3.2 Local .. 149

9.4 Graphical Software Constructs .. 149

9.5 IfThenElse Block ... 150

9.5.1 IfThenElse Block Example .. 150

9.5.2 Looping ... 152

9.5.3 Ordering or Sequencing the Flow of Data and Calculations 153

9.5.4 Using Local or Global Variables .. 153

9.5.5 Other Coding Considerations .. 153

9.6 Iterator Block .. 154

9.7 Explicit Block Sequencing ... 154

9.8 Example Model .. 155

A AutoCode Options ... 161

A.1 Options When Invoking AutoCode .. 161

A.2 Using the autostar.opt File .. 169

A.3 Mapping Options ... 171

A.3.1 Setting Subsystem Priorities .. 171

A.3.2 Setting Subsystem Skews ... 173

A.3.3 Setting Processor Subsystem Map .. 173

A.3.4 Processor Map Specification from the OS Prompt 174

B Software Development Kit .. 175

B.1 Scope .. 175

B.2 Supported Versions and Languages .. 176

B.3 Overview ... 177

B.3.1 Procedures-Only SystemBuild Model .. 177
viii

Contents
B.3.2 Limitations .. 177

B.3.3 Application Programming Interface ... 177

Interface Structure .. 178
Initialization() Function ... 178
Execute() Function .. 178

B.3.4 Driver Program .. 178

B.4 C API .. 178

B.4.1 Logical Design .. 179

B.4.2 Interface Structure .. 179

B.4.3 Initialize() Function .. 179

B.4.4 Execute() Function .. 180

B.4.5 Physical Design (c_sdk.tpl) .. 180

Header File .. 181
Source File ... 181

B.4.6 Physical Design (c_sdk_m.tpl) ... 181

Header Files .. 181
Source File ... 181

B.4.7 Compilation and Link Details .. 182

Standalone Library Header Files ... 182
Platform Indicator .. 182
Standalone Library Source Files .. 182

B.5 Sample Code (C-SDK) Example ... 183

B.6 Wheel Program (C-SDK) Example .. 185

B.7 C++ API ... 188

B.7.1 Logical Design .. 188

Class ... 188
Private Data Member .. 188
Constructor Method .. 189
Execute Method .. 189

B.7.2 Physical Design (cpp_sdk.tpl) .. 189
ix

MATRIXX 7.0
AutoCode User’s Guide
Header File ... 190
Source File ... 190

B.7.3 Physical Design (cpp_sdk_m.tpl) .. 190

Header Files .. 190
Source File ... 191

B.7.4 Compilation and Link Details ... 191

B.7.5 Example 3: Sample Code (CPP-SDK) ... 191

Header File (interfaces.h) ... 191
Driver Program (main.cpp) .. 193

B.7.6 Example 4: Wheel Program (CPP-SDK) ... 193

Step 0: Set up .. 193
Step 1: Generate API ... 194
Step 2: Compile and Link API Functions and Driver Program .. 194
Driver Program (wheeldriver.cpp) ... 195

B.8 Ada API ... 196

B.8.1 Logical Design .. 196

Package ... 196
Interface Record ... 196
Initialize Procedure ... 197
Execute() Function .. 197

B.8.2 Physical Design (package feather_ext_pkg) 198

B.8.3 Compilation and Link Details ... 198

B.8.4 Example 5: Sample Code (Ada-SDK) ... 198

Package Specification .. 198
Driver Program .. 199

C Sample AutoCode Output ... 201

Index 217
x

1

Introduction
This manual provides an overview of the automatic code generation process
using AutoCode®. With AutoCode you will soon be automatically generating
robust, high-quality, real-time C or Ada source code from SystemBuild™ block
diagrams.

1.1 Manual Organization

This guide provides the information you need to get started using AutoCode®.
This guide is organized as follows.

■ Chapter 1 (this chapter) provides an overview of the rapid prototyping
concept, the automatic code generation process, and the nature of the real-
time generated code.

■ Chapter 2, Using AutoCode, explains how to generate real-time code by
invoking AutoCode from SystemBuild™, Xmath®, or the operating system
prompt. Generated code applications are also discussed.

■ Chapter 3, Using AutoCode with BetterState, details the management of the
application control flow via the real-time scheduler.

■ Chapter 4, Managing and Scheduling Applications, details the management
of the application control flow via the real-time scheduler. Topics of
discussion include scheduler operation sequence, subsystem properties,
subsystem interruption, and examples of scheduler operation.
1

MATRIXX 7.0
AutoCode User’s Guide
■ Chapter 5, Code Generation for Discrete Systems, describes the scheduler
architecture as it relates to discrete code generation. Topics include IPAR and
LPAR.

■ Chapter 6, Code Generation for Continuous Systems, describes the scheduler
architecture as it relates to continuous code generation. Topics include fixed-
step integrators, user-defined integrators, and how to generate code for
continuous and hybrid systems.

■ Chapter 7, Using VxWorks with AutoCode, describes the VxWorks AutoCode
C template package with MATRIXX

® 7.X and Tornado 2.

■ Chapter 8, Customizing AutoCode and Generated Code, provides advanced
methods for customizing AutoCode and its output real-time code using
AutoCode configuration options, templates (see the Template Programming
Language User’s Guide), BlockScript, and %variables.

■ Chapter 9, Introduction to Software Constructs with AutoCode, describes
UserCode Blocks, Macro Procedure Blocks, and Procedure SuperBlocks.

■ Appendix A, AutoCode Options, describes options that can be used when
invoking AutoCode from within the Xmath Commands window or from the OS
prompt. This appendix also describes how to use an autostart.opt file.

■ Appendix B, Software Development Kit, describes the AutoCode Procedure
Software Development Kit (ACP SDK). The SDK provides users of AutoCode
generated code an Application Programming Interface (API) to generated
Standard and Startup Procedure SuperBlock code.

■ Appendix C, Sample AutoCode Output, shows the generated AutoCode
output from the IfThenElse example shown in Chapter 9.

This guide also has an Index.

For more advanced details and information necessary to customize both
AutoCode and the generated real-time output code, see the Template Programming
Language User’s Guide or the AutoCode Reference.

1.2 Rapid Prototyping Concept

Conventional real-time system development usually takes place in stages, with
separate tools for control design, software engineering, data acquisition, and
2

1

1
Introduction
testing. The MATRIXX Product Family integrates tools for each stage of system
development into a single environment. This allows a design to move easily from
one stage to the next, making it possible to create a working prototype early in the
design process.

Within the MATRIXX SystemBuild and Xmath products, you can build, simulate,
analyze, test, and debug a model. You can then use AutoCode to generate real-
time code in a high-level language (C or Ada) for the model. The generated
application code can be evaluated on the host with SystemBuild simulation or run
on the RealSim™ controller for hardware in-the-loop testing. The generated
application code can be cross-compiled and linked for implementation on an
embedded processor. You can also use DocumentIt™ to generate documentation.

Figure 1-1 shows AutoCode in the MATRIXX product line.
3

MATRIXX 7.0
AutoCode User’s Guide
Figure 1-1 AutoCode in the MATRIX X Product Line

Xmath

SystemBuild

(Hardware in-the-loop testing)

AutoCode

Cross-Compilers/
Real-Time

Operating System
(pSOS or VxWorks)

MATRIXX Product Family

RealSim

DocumentIt

(Analysis/Design)

(Modeling/Simulation)

(Document Generation)(Code Generation)

Implemented on an
Embedded Processor

ASCII Output
Document

Microsoft WordFrameMaker

InterLeaf
4

1

1
Introduction
1.3 Automatic Code Generation Process

As an integral part of the Wind River Rapid Prototyping concept, AutoCode lets
you generate high-level language code from a SystemBuild block diagram model
quickly and automatically. A typical sequence for using AutoCode is as follows
(this sequence corresponds to the sequence shown in Figure 1-2, p.6):

1. Build the Model and Validate Through Simulation

You can quickly develop the continuous-time plant model and corresponding
discrete-time controller SuperBlocks using SystemBuild block diagrams. The
SystemBuild model is built up from a large palette of blocks that combine to
describe the way that the model works and how it should be controlled. You
can then analyze and simulate the plant and controller in Xmath; if you find
any errors, you can easily amend the model and simulate it again until you
are satisfied with its performance. You can perform parametric studies in
simulation and pass the values from the Xmath workspace into the generated
code.

2. Customize Code Generation

You can tailor your generated code using the template programming
language (TPL), provided in AutoCode. This programming language lets you
customize the code for a wide variety of specialized purposes. Run-time
parameterization can be programmed into the generated program. Also,
configuration information can be entered when the real-time code is
generated.

3. Generate the Real-Time Code

You can invoke AutoCode from inside SystemBuild, from the Xmath
Commands window, or from the operating system command line. AutoCode
processes discrete-time and continuous-time SuperBlocks to generate high-
level language code in C or Ada.

4. Compile and Link

You can customize the environment in which the generated code runs by
editing standalone Input/Output utilities files included with AutoCode.
Additionally, you can further enhance the functionality of your model by
adding UserCode Blocks. Compile and link the generated code with these
standalone files and any UserCode Blocks that you will be using to produce a
standalone real-time application program for simulation on the host. Refer to
2.5, p.25.
5

MATRIXX 7.0
AutoCode User’s Guide
5. Validate the Generated Code Through Simulation Comparison

Now you can test and simulate the generated code on the host and feed the
results back to Xmath for comparison with the SystemBuild simulation data.
These steps are described in 2.5, p.25.

Figure 1-2 AutoCode Automatic Code Generation Process

Step 1

SystemBuild/Xmath
Model Simulation

SystemBuild
Model File

Template FileLocal
AutoCode

High-Level Language
Code Generator

C or Ada
Source Code

Compile/Link
Standalone/

Target-Specific
I/O Utilities

UserCode Blocks

Real-Time
Application

Simulation on Host
(Compare with

SystemBuild Simulation)

RealSim/Rapid Prototyping
(Hardware in-the-loop Testing)

Embedded CPU
Target

(Implementation)

Step 3

(.rtf)

Step 4

Step 2 Step 2

Step 5
Step 6

Step 7

(.dac)Configuration Options

with %Vars
6

1

1
Introduction
6. Test with Real or Prototyped Hardware

You can use a rapid prototyping tool such as RealSim to implement a real-
time controller, or to perform real-time hardware-in-the-loop testing with
actual or emulated hardware. RealSim customers are provided with special
templates and target-specific utilities to generate and link code specific to
RealSim.

7. Implement the Finished Code on the Target

After you have completed all needed testing and simulation to optimize the
functionality and performance of your application, the perfected code can be
implemented on the target processor.

1.4 Using AutoCode with BetterState

The AutoCode code generation command includes a call to request BetterState to
generate code for its statecharts. AutoCode does not generate code for BetterState
charts directly. The BetterState code generator interfaces with BlockScript to
produce the correct output language from the model. The generated code handles
interfacing to AutoCode and simulation. This interface supports calling
SystemBuild procedures and access to SystemBuild global variables.

The process for generating code for AutoCode and BetterState, from the
AutoCode GUI or the simulator, is shown in Figure 1-3.
7

MATRIXX 7.0
AutoCode User’s Guide
The AutoCode-BetterState interface uses the AutoCode Software Development
Kit (SDK) interface which is described in Appendix B.

The AutoCode-BetterState interface provides the following features:

■ Fixed-point libraries (standalone utilities and more source code files)

■ Variable step-size solver in AutoCode

■ Code Generation support for VxWorks

■ makefile generation with the acmake command

Figure 1-3 Generating Code for AutoCode and BetterState

AutoCode AutoCode MathScript

Analyzer

GUI or Simulator Command (.msc) File

C Files (*.c)

AutoCode Simulator

User Code

BetterState

C Files (*.c) simucb.dll

Combine to form
an executable

file

Combine to form
an executable

file

Code Generator

Code Generator
8

1

1
Introduction
■ Name mangling feature (new flag for Code Generator; AutoCode changes
names in the user’s model)

For more information about this interface, see Chapter 3, Using AutoCode with
BetterState. For information about using VxWorks with AutoCode, see Chapter 7.

1.5 Profile of the Generated Program

If no user-originated changes are made to the template program, the generated
application program consists of calls to a time-critical application manager/
scheduler, a re-entrant dispatcher, one or more pre-emptible subsystems, input/
output functions, a timer interrupt handler, and a background function (see
Figure 1-4, p.10). The calls to the modules of the generated program are in the
template program, which lets you modify the way the generated program is
structured and expand it as needed. Under control of the default template file, the
application program is assembled from components taken from a variety of files,
with different provisions for user modification, as explained in the following:

■ Manager/Scheduler

The manager/scheduler is a time-critical routine that performs external
input/output functions for the application program, takes care of various
housekeeping tasks, and generates a dispatch list of the subsystems that are
ready to be executed.

Tailoring: This routine can be customized by modifying or rewriting the
supplied real-time scheduler. Under control of the template file, any number
or variety of scheduler programs can be used.
9

MATRIXX 7.0
AutoCode User’s Guide
■ Dispatcher

The dispatcher dispatches the subsystems that are ready to be executed from
the dispatch list in a prioritized order. Highest priority subsystems get
dispatched first.

Tailoring: Dispatcher logic can be customized by modifying the template file.

■ Subsystems

The subsystems contain the code implementing block algorithms generated
from the SystemBuild model. They implement real-time activities by

Figure 1-4 Components of the Generated Application Program

Initial Entry

Background

Interrupt Handler

Segment from User-Modifiable Template File

Segment from Non-User-Modifiable Template File

Segment from Standalone Utilities File

Input/Output

Pre-emptible

Subsystems

Dispatcher

Manager/Scheduler

Routines
10

1

1
Introduction
accepting inputs and posting outputs at times derived from the sampling
rates of the SuperBlocks in the SystemBuild model, under control of the
manager/scheduler.

Tailoring: Customization of block code is supported only via the BlockScript
and UserCode blocks. The block code for other block types is proprietary.
Refer to 8.4 BlockScript Block, p.140 for details regarding BlockScript.

■ I/O Routines

The main function of I/O routines is to provide input data to the AutoCode
real-time application on every scheduler cycle and to obtain the computed
outputs from it. The supplied I/O routines read inputs from a MATRIXX
formatted ASCII file and write outputs to a file in the same format.

Tailoring: The input/output routines are part of the standalone utilities file
and are intended to be user modified. Any variety of I/O routines can be
user-written and invoked as needed under control of the template program.

■ Timer Interrupt Handler

The timer interrupt handler calls (or invokes) the manager/scheduler at a
specified time interval. This is not needed for standalone simulation on a
host.

Tailoring: This routine is intended to be user-defined, such that it invokes the
scheduler on every minor cycle.

■ Background Function

The background function performs idle time non-time-critical tasks such as
self-diagnosis or updating a display; its essential qualification is to be
interruptible. For standalone simulation, it merely calls the scheduler for
user-specified simulation cycles as specified by time vector.

Tailoring: This is part of the standalone utilities file that can be user-modified
or completely rewritten.

For a detailed explanation of the flow of control in the generated program, see
Chapter 4, Managing and Scheduling Applications.
11

MATRIXX 7.0
AutoCode User’s Guide
1.6 AutoCode-Generated Reusable Procedures

In the earlier sections of this chapter, we looked at the process of generating a real-
time scheduled application program and its nature. However, in some cases, you
might not want to generate scheduler and related data structures. Rather, you
might want to generate merely algorithmic procedures (subroutines). AutoCode
provides an option to let you generate only algorithmic procedures from
Procedure SuperBlocks, without the scheduler and its data structures.

Following are some uses of generating reusable algorithmic procedures:

■ Linking them to your own real-time scheduler (executive) or simulator

■ Linking them to the SystemBuild simulator for algorithmic verification and
speeding simulation by using integer math in the procedure

The AutoCode generated procedures link to the SystemBuild simulator via a
UserCode Block in the SystemBuild model. The procedure describing how to link
them is provided in Chapters 2 and 3 of the AutoCode Reference.

1.7 Using MATRIX X Help

MATRIXX 7.X provides a hypertext markup language (HTML) help system. The
MATRIXX Help system is a self-contained system with multiple hypertext links
from one component to another. This help system, augmented by online manuals,
covers most MATRIXX topics except for installation. For installation information,
see your online or printed manuals.

The MATRIXX Help system requires Netscape Communicator 4.03 (included on
the MATRIXX CD) or later. On UNIX systems, an OEM version of Navigator is
automatically included in the MATRIXX installation. On PC systems, Netscape
Communicator must be installed independently using the Netscape installation
procedure included on the MATRIXX CD.

Additional Netscape Information

For more information on Netscape products, see Netscape’s home page at
www.netscape.com.
12

1

1
Introduction
1.8 Related Publications

Wind River provides a complete library of publications to support its products. In
addition to this guide, publications that you may find particularly useful when
using AutoCode include the following:

■ Xmath User’s Guide

■ SystemBuild User’s Guide

■ BetterState User’s Guide

■ BlockScript User’s Guide

■ RealSim User’s Guide

■ AutoCode Reference

■ Template Programming Language User’s Guide

■ DocumentIt User’s Guide

For additional documentation, see the MATRIXX Help or the Wind River home
page at www.windriver.com.
13

MATRIXX 7.0
AutoCode User’s Guide
14

2

Using AutoCode
This chapter explains how to generate real-time code by invoking AutoCode from
SystemBuild, the Xmath Commands window, or the operating system prompt. This
chapter also discusses generated code applications.

2.1 How to Generate Real-Time Code

Using AutoCode, you can generate C or Ada high-level language code from:

SystemBuild — generates a real-time file (.rtf) and then source code from a model,
after selecting it from the Catalog Browser. For ease of use, this is the
recommended method of code generation.

Xmath — generates an .rtf file and then source code from a model, using an Xmath
command.

Operating system prompt — generates source code from an already-existing .rtf file,
using the autostar command from the operating system prompt.

For Xmath Commands window or operating system command options, see
Appendix A, AutoCode Options.
15

MATRIXX 7.0
AutoCode User’s Guide
2.1.1 Generating Code from Within SystemBuild

To use AutoCode while inside SystemBuild, select a SuperBlock in the Catalog
Browser, and then select Tools→AutoCode to open the dialog. Instructions for using
this dialog are in the MATRIXX Help.

Depending on the template file and command options used, the code generated
can be either C code or Ada code.

2.1.2 Generating Code from Xmath

The autocode command lets you process a model to generate C or Ada code. Two
syntax formats are supported:

autocode, {model = name1, file = name2, ...
language = name3, tpldac = name4, ...
rtf = name5, vars, typecheck}

autocode model, { options}

where name1 identifies the model to be processed for code generation. The model
will be either:

■ A string (in “quotes”). Must be the name of a SuperBlock that exists in the
current SystemBuild catalog. This SuperBlock is analyzed and processed to
generate code.

■ A variable (not in quotes). Variables should be assigned to a string, the string
must be the name of a SuperBlock in the current catalog; it is analyzed and
processed to generate code.

Whenever a file name or other string is included in a command string, it must be
enclosed in quotes, but a variable name must not be in quotes.

Keywords for the second type of syntax are the same as for the first syntax, except
model. See Appendix A for the Xmath command options.

Examples:

autocode " topSB"

The system generates a real-time file named topSB.rtf. It loads this file and
processes it to produce C code. The output file name is topSB.c.

autocode " topSB", {tpldac="mytemplet",!vars}

autocode, {model = " topSB", tpldac = "mytemplet", !vars}
16

2

2
Using AutoCode
Either syntax processes the SuperBlock topSB in the current catalog to produce C
code, using the direct access template file MyTemplate and no Xmath %variables.
The output file name is topSB.c.

2.1.3 Generating Code from the Operating System

If a model file already exists, it is also possible to execute AutoCode from the
operating system prompt. The file intended for processing must be a real-time file
(.rtf). At the operating system prompt, execute the command:

% autostar {options} model_file.rtf

Many of the options are the same as the fields in the Generate Real-Time Code
dialog. See Appendix A for the operating system command options.

AutoCode runs, creating a high-level language file. When the operating system
prompt returns, the process is complete.

Examples:

% autostar -h

shows a help display.

% autostar -l c SysBld_file.rtf

processes the model file SysBld_file.rtf to produce a C code file named SysBld_file.c.
All default settings are accepted. It assumes a direct access template file named
c_sim.dac exists in your working directory.

% autostar -l a -t ada_rt.tpl -sd 6 -o CodeFile.a MyModel.rtf

processes the ASCII template file ada_rt.tpl and produces a direct access template
file ada_rt.dac. The model file MyModel.rtf is then processed, producing Ada code
in file CodeFile.a, which contains numeric literals encoded using a maximum of 6
significant digits of precision.

% autostar -l c -t c_sim.tpl

compiles the template file c_sim.tpl to produce a .dac file named c_sim.dac.
17

MATRIXX 7.0
AutoCode User’s Guide
2.1.4 Limitations/Restrictions

■ SystemBuild models processed by AutoCode cannot contain algebraic loops.

■ AutoCode models cannot accept data that includes complex numbers.

■ The input time vector must start at 0.0.

■ AutoCode does not support the following blocks:

● MathScript Block

● HDL CoSim Block

● Implicit UserCode Block

■ Macro and Inline Procedure SuperBlocks are not supported within
Conditional SuperBlocks.

■ When AutoCode encounters a user input Interactive Animation icon,
generated code assigns a constant value equal to the initial value of the icon.

■ Only block comments are inserted in the generated-for-display Interactive
Animation icons.

■ AutoCode does not generate parameterized code for the following blocks
even though parameters within these blocks can be parameterized using the
%variable notation:

● State Space Block

● Num, Den Block

● Gain, Zeros, Poles Block

● Gain, Damps, Freqs Block

The AutoCode software lets you generate ANSI C or Ada code automatically
from SystemBuild models.

You can generate code from the Catalog Browser in SystemBuild or use the
autocode Xmath command. The generated code represents a complete
implementation of the model. The generated code can be targeted for and run on
other computers or an actual controller. The default target is a standalone
simulation that you can execute on your computer; you can then load the results
of the simulation back into Xmath for analysis.

NOTE: Dynamic systems are transformed to optimize performance and the
mapping between the Xmath value and the block variable is lost. Variable space is
allocated and initialized but the values are hardcoded.
18

2

2
Using AutoCode
2.2 Generating Non-Customized Code

With Xmath running on your host, generate code for the sample Discrete Cruise
System model by taking these steps:

1. Make sure you are in a directory where you want to save your code (and that
you have write permission in that directory). If not, enter the following
command from the Xmath Commands window:

set directory =" your_working_directory"

2. From the Xmath Commands window, type the following command to load the
model:

load "$SYSBLD\demo\cruise_demo\cruise_d.cat";

3. From the SystemBuild - Catalog Browser, select the Discrete Cruise System
SuperBlock.

4. From the Catalog Browser, select Tools→AutoCode to bring up the Generate
Real-Time Code dialog.

NOTE: The Xmath Commands window is the only place that can recognize
environment variables. For loading with other methods, you must know that full
pathname of the SystemBuild directory. Xmath commands use $env_var; whereas,
commands that go directly to the operating system, such as oscmd, use the
operating system convention (for example, %env_var% for Windows).

NOTE: You must generate code from a top level SuperBlock.
19

MATRIXX 7.0
AutoCode User’s Guide
or select a top level SuperBlock and enter Ctrl-G to display the dialog.

5. Enter a name in the File name field or accept the default,
Discrete_Cruise_System.

6. In the Code Generation Options section, select:

a. Subsystems or Procedures in the Code Style field.

b. C, Ada, or RTF only as the Language.

c. %Vars from Xmath or Block Defaults in the Block Parameters field.

d. Or deselect Typecheck.

7. Click OK to start the code generation process.

8. Display the Xmath Commands window to monitor the progress of the code
generation.

9. Once the code generation is complete, look for a statement similar to the
following in the Xmath log area:

Output generated in d:\user\test\Discrete_Cruise_System.c.

Code generation complete.

10. (Optional) Display the output file in the Xmath output area by entering a type
command similar to the following in the Xmath Commands window:

oscmd ("type d:\user\test\Discrete_Cruise_System.c")
20

2

2
Using AutoCode
2.3 Generating Customized Code

To customize your AutoCode output, click Advanced on the Generate Real-Time
Code dialog; this brings up the Advanced dialog.

You can use the Advanced dialog or use keywords with the autocode Xmath
command to customize the generated code as follows:

 Templates tab — lets you control the formatting of the output of AutoCode to meet
a variety of software needs; you can modify the overall architecture of
generated code, customize the scheduler, modify data structures and external
I/O calls, add user code, and so forth. Using the Template Programming
Language (TPL), you can tailor any part of the code except the hierarchy logic
and the elementary blocks. Numerous templates are available, including one
to customize the generated code for the pSOSystem real-time operating
system. For more information on templates, see the Template Programming
Language User’s Guide.

Formatting tab — lets you set the form of the generated code. You can specify
settings for the maximum number of significant digits (default is 16),
maximum length of variable names (default is 48), maximum number of
columns per row (default is 80), and other formatting settings (as shown).
21

MATRIXX 7.0
AutoCode User’s Guide
22

2

2
Using AutoCode
IALG Options (Integration Algorithms) tab — lets you select an integration algorithm
such as Euler, Runge Kutta, Kutta-Merson, or a user-defined algorithm. This
tab also lets you set a minimum scheduler frequency and a continuous
subsystem sample interval.

Multi-Processor tab — lets you specify a processor map, startup map, background
map, interrupt map, skew map, priority map, or map file. You can also
specify up to 10 processors and select shared memory callouts.

Optimization tab (shown in 2.3, p.21) — lets you make general, vectorization, and
VAR block settings that affect code size and efficiency (see the AutoCode
Reference for details).

Miscellaneous tab (shown in Figure 2-1) — lets you select an options file, the type of
scheduler, output scope control, and various other settings. For information
about how to set epsilon, for example, see Appendix A, AutoCode Options.

RTOS (real-time operating system) tab — lets you specify a configuration file and
whether to generate extended procedure INFO data structures.

Once you have customized your settings, you click OK in the Advanced dialog;
then you generate code by clicking OK in the Generate Real-Time Code dialog.
23

MATRIXX 7.0
AutoCode User’s Guide
For information about autocode keywords, see Appendix A, AutoCode Options
and the MATRIXX Help.

2.4 Using Templates

The AutoCode software template feature enables you to create accurate software
for your application. Unique to AutoCode, the Wind River templates give you
control over comment density (adding or deleting comments), application of
specific data structures or the initialization of variables. Templates are designed to
produce language-specific code for real-time execution in a host environment.

The provided templates can be used for starting points for tailoring generated
code to suit specific embedded targets. You can specify the AutoCode template
file from the Templates tab of the Advanced dialog (as shown in Figure 2-2).

Figure 2-1 Advanced Dialog, Miscellaneous Tab
24

2

2
Using AutoCode
The template can be either a template file (.tpl) or a direct-access file (.dac).

2.5 Applications of AutoCode-Generated Code

In Section 2.1 you learned how to generate real-time code using AutoCode from
SystemBuild, the Xmath Commands window, and the operating system prompt.
These are applications of the AutoCode-generated code:

■ Standalone simulation on the host machine

■ Rapid Prototyping

■ Real-time simulation

■ Embedded real-time control

Figure 2-2 Advanced Dialog, Templates Tab
25

MATRIXX 7.0
AutoCode User’s Guide
2.5.1 Standalone Simulation

AutoCode lets you execute code from a standalone UNIX or Windows system;
use the same input vectors for SystemBuild simulation; test the generated
application with these vectors; and load the output vectors back to Xmath for
comparison and analysis.

When a system has been modeled in SystemBuild and its source code has been
generated using AutoCode, you can compare the outputs from the generated
code against those obtained from simulating the block diagram. The Standalone
Library, provided in your src distribution directory, supports this function.

The Standalone Library is a collection of subroutines that performs the operations
of the target-specific utilities to allow testing of the generated code in a traditional
non-real-time host or PC environment. The Standalone Library provides services
such as reading in an input data file and producing an output file.

The role of the Standalone Library in testing the generated application code
against the simulations is illustrated in Figure 2-3, p.27.

NOTE: Use the csi option so generated code will match sim results for continuous
systems.
26

2

2
Using AutoCode
Figure 2-3 Compiling, Linking, and Running the Generated Program

Load in Xmath

User Code
Standalone

Library
C/Ada

Generated Code

Application
(executable)

Run

file.out

Compare/Plot Results

file.in
(t, u vectors)

Save Xmath
Input Vectors

Run acmake to Compile and Link the Application
27

MATRIXX 7.0
AutoCode User’s Guide
Standalone Simulation

The steps required to test the generated code from an OS prompt are:

1. Depending upon your platform, do either of the following:

a. On a Windows system, make sure that the environment variables are set
up according to the Microsoft Visual C++ Getting Started manual. On a
Windows 98 or Windows 95 system, use the Set envvar = command in the
autoexec.bat file. On a Windows NT or Windows 2000 system, select the
Environment tab of System Properties in Start→Settings→Control Panel.

The path should have: C:\MSDEV\BIN.

The include should have:
C:\MSDEV\INCLUDE;C:\MSDEV\MFC\INCLUDE.

The lib should have: C:\MSDEV\LIB;C:\MSDEV\MFC\LIB.

b. On a UNIX system, make sure the path to your compiler includes your
path environment variable. If not, enter the which cc command to display
your compiler path. If necessary, add the compiler path to you path
environment variable by entering:

setenv PATH ${ path}: compiler_path

2. Generate code from the SystemBuild - Catalog Browser.

3. Run the acmake command to generate a makefile that automatically rebuilds
all out-of-date objects and then relinks the executable. You can use the acmake
command to complete an incremental build (Ada only) or a full build. For
example:

You can use the clean option to remove all build objects from a directory:

acmake update -f model.mak Incremental build for Ada only (the C makefile
automatically determines whether to do an
incremental or full build)

acmake -f model.mak Full build for Windows

acmake -f model.mk Full build for UNIX

acmake clean -f model.mak Deletes all build generated files from the
directory
28

2

2
Using AutoCode
4. Create an input file, file.in, containing (column) vectors t (time) and u
(inputs), in MATRIXX ASCII format, using Xmath as follows:

t = [0: ...]’;
u = [...];
save t u file = "file.in" {matrixx, ascii};

Time vector t should always start with the first element value as zero. t and u
vectors should have the same number of rows.

5. Run your executable from the OS prompt and specify the MATRIXX ASCII
file name as file.in and the output file name as file.out, as shown below.

% executable
Enter xmath {matrixx,ascii} formatted input filename: file.in
Enter output filename: file.out

6. Load the output from the generated code file.out back into Xmath and
compare it to the simulation. (See 2.5.2, p.29 for the simulation options. Use
the [te,ye] extended-time simulation feature to obtain all the discrete time
points.) The file contains two items, the output matrix yrt and the time vector
ytime. The generated code and simulation results should match very closely.
For more details on each subroutine in the Standalone Library, refer to the
comments in the source file.

After you have completed all needed testing and simulation to optimize the
functionality and performance of your application, the perfected code can be
implemented onto the target processor.

2.5.2 Simulation Options

For best results when using the Standalone Library to compare the generated
code with simulation results, you first need to set up the simulator to imitate the
generated code’s real-time behavior. This is done through simulator options.

The appropriate Xmath command is:

setsbdefault,{actiming,extend,typecheck}

The SystemBuild simulator provides the actiming keyword in order to match
AutoCode results for discrete systems. The simulator accomplishes this by
matching AutoCode’s scheduler cycle, system initialization, and execution and
posting times for each subsystem.

Three simulation keyword values are forced so that the initialization and posting
of outputs match AutoCode.
29

MATRIXX 7.0
AutoCode User’s Guide
This command can be included in your set-up file. It is a good idea to use these
options whenever your discrete controller model is intended for eventual
implementation on a digital computer. Analyze your top-level SuperBlock from
the SystemBuild menu. For more information, see the MATRIXX Help or the
SystemBuild User’s Guide.

Assuming that you have executed the setsbdefaults statement shown above, you
can execute the simulation with the command:

[te,ye] = sim(model,t,u,{sim keywords});

where:

model is a text string enclosed in double quotes, which is the name of the top-level
SuperBlock in the SuperBlock Editor.

t is the required time vector.

u is an input data matrix.

2.5.3 Rapid Prototyping

AutoCode provides the means for fast implementation of SystemBuild block
diagrams without lengthy manual coding. You can speed up design iterations by
simply editing the block diagrams and generating new code. For more
information on rapid prototyping, see the RealSim User’s Guide.

cdelay = 1 The output posting is always delayed one minor
cycle.

initmode = 0 This keyword setting disables the initialization that
is normally performed at simulation time. 0 =
Outputs of continuous subsystems only are
computed based on initial conditions and inputs.
Outputs of discrete subsystems are set to .

dtout = 0 No extra output time points are specified. This
keyword forces the outputs of the simulation to be
posted only at the minor cycle of the simulation
scheduler, which is defined by the least common
multiple of the sampling intervals and timing
requirements of the subsystems.

ε

30

2

2
Using AutoCode
2.5.4 Real-Time Simulation

AutoCode lets you create and execute code and perform hardware-in-the-loop
simulations for an entire system using RealSim. For details regarding real-time
simulation, see the RealSim User’s Guide.

2.5.5 Implement Embedded Real-Time Control

AutoCode lets you generate code for real-time controllers. You can cross-compile,
link, and download onto a wide variety of target processors.

2.6 How to Integrate Generated Code into Your Target

This section describes how to integrate automatically generated code into your
target-specific application. As shown in Figure 2-4 the development process is
31

MATRIXX 7.0
AutoCode User’s Guide
complex and iterative. AutoCode can be used to shorten the coding time and to
advance more rapidly into the integration, test, and final debugging stages.

2.6.1 Loading the Fixed-Point Demo

The fixed-point demo (fixed-point.dat) found in the sysbld\demo directory
addresses the following system requirements:

■ Design a 5th order filter using fixed-point arithmetic.

■ Target the filter for a Motorola 68K board (fixed-point) or simulator

■ Minimize code size (limited ROM/RAM)

Figure 2-4 Overview of Development Process Using Generated Code

NOTE: Development templates can be user-defined for each application or target.

Requirements

Simulation
Hardware
In-the-Loop

Prototyping

Document

Development Methodology

Production

Application

Maintenance

Coding, Integration, Test, and Debugging

Design

T i m e

Development

Templates

Planning and Project Tracking

Document Document

Target
32

2

2
Using AutoCode
The fixed-point demo model illustrates how users can analyze and compare fixed
versus floating point behavior when all or part of the system is modeled with
fixed-point arithmetic. Fixed-point arithmetic is commonly used in high-volume
applications to approximate floating-point arithmetic on an integer only
microprocessor. SystemBuild provides an extensive set of intrinsic fixed-point
data types and analysis tools for fixed-point simulation as described in the
SystemBuild User’s Guide. This implementation allows fixed-point simulation to be
easily toggled on and off to facilitate comparison with floating-point behavior.
The analysis tools help you identify quantization effects and select fixed-point
scale factors.

This model includes a filter implemented using fixed-point arithmetic: all
numerical calculations are performed with real numbers represented by an
unsigned short (16 bits) data type. The radix is the number of bits used to
represent the fractional part of a fixed-point number. By increasing the radix, you
increase the resolution, but you also decrease the range of the numbers that can be
represented. Adjusting the radix of a fixed-point number to allow the appropriate
range and resolution is called scaling. For example, an unsigned byte (8 bits) with
33

MATRIXX 7.0
AutoCode User’s Guide
a radix 2 can take on a minimum value of 9, a maximum value of only 31.875, but
has a resolution of 0.125.

2.6.2 Determining System Scaling

You can use the Minmax Display tool to help you track down fixed-point
problems. This tool allows you to examine all output minimum values, maximum
values, and the times they were achieved. The tool also tracks any fixed-point
overflow that occurs during a simulation. To see the results of a simulation, enter
minmax_display from the Xmath Commands window and click Load from the Load
Dataset dialog. Once you have your minmax display from any simulation, you can
select any SuperBlock and any block within a SuperBlock and view DataType, Max
Value, Max Time, Min Value, and Min Time.

You can also use the Minmax Display tool to monitor dynamic ranges of signals.
For fixed-point signals, overflow and underflow of fixed-point simulations are
detected and tracked, along with the time at which the events occurred. You can
navigate directly to the block where an overflow occurred. You can then use this
information to determine the proper scaling for the system. For example:

1. From the Xmath Commands window, define time variable t as follows:

t=[0:0.1:100]’;
34

2

2
Using AutoCode
2. From the SuperBlock Editor window, select Tools→Simulate and enter a Timv
Vector/Variable, an Output Variable, and a MinMax Variable in the
SystemBuild Simulation Parameters dialog as shown and click OK:

3. From the Xmath Commands window, launch the Minmax Display tool with the
following command:

minmax_display
35

MATRIXX 7.0
AutoCode User’s Guide
4. To view a MinMax Variable dataset, select Special→Load and the Minmax Load
Window appears.
36

2

2
Using AutoCode
5. Select a dataset (for example, mmv for the MinMax Variable) and Click Load.
The Minmax Display window appears with analysis data for the fixed-point
demo.

2.6.3 Modular Programming

The fixed-point demo consists of a sine wave signal generator with a magnitude
between -50 and 50, an algebraic expression that offsets the sine wave by 100 so
that its magnitude is between 50 and 150, a signal converter to change from type
float to type unsigned byte, and a filter. The filter is implemented with fixed-point
arithmetic. Notice that the “single filter” SuperBlock is implemented as a
Procedure Class of Standard.

Demonstrating the re-use of blocks, the “single filter” SuperBlock is built once,
but reused 5 times in the “boost filter” SuperBlock.
37

MATRIXX 7.0
AutoCode User’s Guide
When the same SuperBlock is implemented over-and-over within a model, one
should consider using a Procedure SuperBlock. In generated code, a procedure is
comparable to a software function; that is, it is called by another program and
data is passed via arguments. Thus, the application’s overall code size can be
reduced. The use of procedures assists in meeting any requirements for code size
minimization.

In Example 2-1, all elements of the “single filter” SuperBlock use a user-defined
type called filrad. filrad is a fixed-point data type: an unsigned short with radix 7
(US7). Simulating the model twice, first using floating-point arithmetic and then
using fixed-point arithmetic, the results shown in Figure 2-5 are observed.

Example 2-1 Floating-Point Versus Fixed-Point Using Radix 7

t=[0:0:.015:10]’;
modifyUserType "filrad",{radix=7}
yflt=sim("FixedPointDemo",t);
yfix=sim("FixedPointDemo",t,{fixpt=1});
plot(t,[yflt,yfix],{xlab="Time(seconds)",ylab="y",title="Filter
Response:Radix=7",rows=2,
row=1,legend=["Floating Point","Fixed Point"]})?
plt_radix7=plot(t,[yflt-yfix],
{xlab="Time(seconds)",ylab="y_float-y_fixed",title="Fixed Point
Error",line_color="blue",rows=2,row=2,keep})?
38

2

2
Using AutoCode
Example 2-2 Floating-Point Versus Fixed-Point Using Radix 8

t=[0:0:.015:10]’;
modifyUserType "filrad",{radix=8}
yflt=sim("FixedPointDemo",t);
yfix=sim("FixedPointDemo",t,{fixpt=1});
plot(t,[yflt,yfix],{xlab="Time(seconds)",ylab="y",title="Filter
Response:Radix=8",rows=2,
row=1,legend=["Floating Point","Fixed Point"]})?
plt_radix8=plot(t,[yflt-yfix],
{xlab="Time(seconds)",ylab="y_float-y_fixed",title="Fixed Point
Error",line_color="blue",rows=2,row=2,keep})?

Figure 2-5 Floating-Point Versus Fixed-Point Using Radix 7
39

MATRIXX 7.0
AutoCode User’s Guide
2.6.4 Comparing the Output

At first glance, the floating-point and fixed-point responses look very similar. The
floating-point response is obscured by the fixed-point response because the
response are so close. However, the plot of error shows that there is a small
difference. When we change the radix of filrad to 8 (US8), this improves the
resolution (0.00390625) of the fixed-point arithmetic but reduces the range (0 to
255.9960938) of numbers that can be represented. Again, the model is simulated
twice, once with floating-point arithmetic and once with fixed-point arithmetic.

Notice that there is now a very obvious saturation effect in the filter. There is a
significant error between the floating-point and fixed-point responses caused by
adjusting the radix of the fixed-point representation.

Figure 2-6 Floating-Point Versus Fixed-Point Using Radix 8
40

2

2
Using AutoCode
2.6.5 Implementation

Typically the phase of development where code is generated (or written) is called
the Implementation or Software Development phase. Before you generate code,
you must set up target-specific utilities and templates for a particular application.
The templates provide a model-independent way to tailor the generated code to a
specific target. Any changes to a model translate directly to changes in the
generated code but do not affect the template.

For example, we can use the c_sim.tpl template (excerpt shown in Example 2-3)
from the case\Acc\templates folder to generate C code targeted for the Motorola
68K board. The utilities file provides a means to accommodate input and output,
which are specific to the target. The sa_utils.c file (excerpt shown in Example 2-4)
from the case\Acc\src folder provides a means to accommodate input and
output, which are specific to the target.

Example 2-3 c_sim.tpl Template File (Excerpt)

--
-- File : c_sim.tpl
-- Project : (C); AutoCode/C
-- Edit level :
--
-- Abstract:

This template is designed to produce both C executive code for
real-time execution in a host environment or modular procedures-only
code. This template can be used as a starting point for tailoring the
generated code to suit specific embedded targets. In particular,
changes would be required in the application scheduler code to
transform the scheduler into an interrupt task driven by a real-time
clock. Also supported is the ability to generate the code into either
a single file or multiple files.

*@

@INT i,j@ @/ Global variables, mainly used for loop counters.

@INC "c_core.tpl"@@
@INC "c_intgr.tpl"@@
@INC "c_sched.tpl"@@
@INC "c_async.tpl"@@
@INC "c_echart.tpl"@@
@INC "c_api.tpl"@@

@*

This main segment defines the control flow of code generation. It invokes
library tpl functions and other tpl functions defined below. User can
customize any of the segments defined in this template or implement new
segments (tpl functions) thereby controlling the output of the code
41

MATRIXX 7.0
AutoCode User’s Guide
generator.

*@

@SEGMENT MAIN()@@
@ASSERT STRCMP("C",language_s)@@
@ASSERT not multiprocessor_b@@
@IFF procs_only_b and nprocedures_i eq 0@@
@ FILEOPEN("stdout", "append")@@

** MODEL ERROR
**
** Cannot use 'procedures-only' option with a model
** that does not have any STANDARD PROCEDURES
**

@ FILECLOSE@

Example 2-4 sa_utils.c File (Excerpt)

** File : sa_utils.c
** Project : Autocode/C
**
** Abstract:
**
** Definitions for AutoCode files.
**
** The following routines provide a set of utility procedures
** that can be used with the code generated by AutoCode/C.
** These routines allow testing of the generated code in a host
** environment and provide a link with Xmath via MATRIXx ASCII formatted
** output files.
*/

#if (__STDC__ || defined(__cplusplus) || defined(c_plusplus))
#include <stdlib.h>
#include <string.h>
#else
extern int strcmp();
extern void exit();

#endif
#include <stdio.h>
#include <math.h>
#include "sa_sys.h"
#include "sa_defn.h"
#include "sa_types.h"
#include "sa_math.h"

#if (ANSI_PROTOTYPES)
static void fatalerr(RT_INTEGER errorCode);
#else
42

2

2
Using AutoCode
static void fatalerr();
#endif

/* Storage allocation parameters.

* To change storage size limits, modify the following parameters.
* --

* MAXU = max number of storage elements for input values in U
* MAXUTIM = max number of input time points in UTIME
* MAXY = max number of storage elements for output values in Y
* MAXYTIM = max number of output time points in YTIME */

#define MAXU 100000L
#define MAXUTIM 10000L

#if defined(OSF1)
#define MAXY 120000L
#define MAXYTIM 30000L
#else
#define MAXY 80000L
#define MAXYTIM 20000L
#endif

#define REQVER 700
#define REQVAR 2
#define DOUBLE_PRECISION TRUE

2.6.6 Optimizations

AutoCode offers many code optimization options as indicated on the
Optimization tab from the Advanced dialog. These options are available in the
form of “flags” that can be turned on and off. These flags can be set to achieve
compiler-like optimizations, reduction of stack space, and/or object size, and
improvement of runtime performance.

For many users, accepting the default settings is the best approach. For
experienced MATRIXX users, a recommended approach is to experiment with
existing models and regenerate code with different options selected. Once a
model has been tested and meets performance expectations, optimization flags
can be turned on and efficient production quality code can be generated. You can
evaluate your optimization results against your particular application.
43

MATRIXX 7.0
AutoCode User’s Guide
Beyond the target-specific utilities and templates lies consideration for interfacing
with an existing scheduler. AutoCode provides its own scheduler that can be
included in with the automatic generation of code, but it may become necessary
to interface with an existing scheduler. With modifications to the template, the
crystal frequency of the processor can be used as the timing base. The interrupt
service routine (ISR) provides entry to the scheduler and incremental time ticks to
the timer.

2.6.7 Integration and Test

An important part of the development process is to test iteratively. Once you have
built part of your model, you can test the partially built model to observe
performance or whether the model meets a particular requirement. One way to
do this is to set up test points. You can establish a test point for any given block by
setting a signal’s scope to global. This is done from the Output tab of the block
dialog.
44

2

2
Using AutoCode
Whether you select local or global scoping has no effect on simulation, but
AutoCode sets up a software scope for the signal. During testing, you can easily
access a global signal. Planning ahead for this test points can improve your
integration and test procedures considerably.

2.7 How to Write Production Quality Code (Graphically)

This section describes the mechanics and the benefits of writing software
graphically and then automatically generating code. The MATRIXX toolset has
been designed for graphical software production. As illustrated in Figure 2-4,
p.32, the software development process consists of requirements design, coding,
and integration and test. The traditional method of hand-coding and hand-
correcting the code is not considered to be the most effective method in the days
of “fast time to market.”
45

MATRIXX 7.0
AutoCode User’s Guide
2.7.1 Graphical Solutions

If requirements can be displayed graphically, then they can be used by system
design and software design teams. Software engineers can then focus more on
architecture on verification. In order to program graphically, certain design
abstractions need to be understood and used. Basic or primitive blocks can be
used to build more complex designs. Interconnections can be represented as
connections between blocks. Data can be assigned to variables.

Design Abstractions

The SystemBuild and AutoCode tools make use of the following design
abstractions:

SuperBlock — This block is user-defined and can be periodic or a procedure. A
Periodic SuperBlock lets you define the exact rate at which the block must run
(either continuous or at a discrete rate). A Procedure SuperBlock takes on the
timing attributes of its calling block (the block’s parent in the hierarchy).

Blocks — Or “building blocks” are the basis for defining algorithms. The
SystemBuild environment has several types of blocks:

Predefined Blocks — Available from the Palette Browser provide a wide range
of functionality: algebraic, dynamic, logical, interpolation tables,
trigonometric, piece-wise linear, transformation, and signal generators

BlockScript Blocks — Provide general programming functionality via a
scripting language. The BlockScript block must be interpreted, so usage
does add some overhead to the model design.

UserCode Blocks — Link either C or FORTRAN subroutines to the SystemBuild
environment.

BetterStateChart Blocks — Provide a link to BetterState statecharts. With the
BetterState module, statecharts can be used within SystemBuild models.
You can simulate your model with Sim, ISIM, and RealSim and generate
code with AutoCode capabilities for BetterState statecharts. Statechart
models can be used to generate C or Ada code, and interactive simulation
enables the animation of BetterState diagrams.
46

2

2
Using AutoCode
Custom Blocks — Provide users with the ability to customize any block and put
it on the Palette Browser. Customization can be as simple as changing an
icon or changing the associated Help, or it can be as complex as the
design of a new block with Help, and icon and callbacks (from the
predefined block, a UCB, or BlockScript).

Signals — Typically signify data flow and can be represented visually through
interblock connections, or through variable reads and writes.

Code Abstractions

SystemBuild maps its design abstractions into code abstractions supported by
AutoCode and BetterState. This includes the following code abstractions:

Functions and Packages — C functions and Ada packages are mapped into
SuperBlocks. Software modules typically make use of functions and packages
to represent algorithms or routines that are used multiple times and usually
become part of a library. A SuperBlock can be used in the same way. It has
lower level functions (blocks), has parameters, variables, and inputs and
outputs.

Code Segments — Blocks and local or global scoped variables (signals). Software
code segments are graphically represented as SystemBuild blocks. Figure 2-7
and Example 2-5 show a comparison of a simple procedure (graphical
coding) and the corresponding generated code. This example implements the
block representation of a gain and a summer block.
47

MATRIXX 7.0
AutoCode User’s Guide
2.7.2 Labels and Names

Label names should be given to all but the most trivial of signals. Labels
significantly improve code readability and maintainability.

SuperBlock inputs have two modes of assigning input names: specifying labels
locally or inheriting higher level labels. Entering names for local inputs is always
a good idea, even if you are doing top down design. Entering local names helps
when the SuperBlock is reused in other applications or parts of the model, as
these names appear in the connections editor, making it easier to make the correct
connections.

In AutoCode, labels are the mechanism for controlling vectorization in code, so
good labeling is very important.

A label appears within the diagram, while a name does not. As shown below the
Input Labels of aaa and bbb defined in the SuperBlock Properties dialog appear in
the diagram shown in Figure 2-7 and the input names of triple_a and triple_b
appear in Example 2-5. The Input Name field is used only by AutoCode. For basic
blocks, you have a choice of specifying a label and a name. AutoCode uses the
name of a signal, if it exists, before using its label to create the variable used in the
generated code.

Figure 2-7 Floating-Point Versus Fixed-Point Using Radix 8
48

2

2
Using AutoCode
A common use for a name is when the variable in the generated code must be
different than (or longer than) the label. Never use a name without a
corresponding label (the name will not appear in the diagram). For most designs,
there is no need to use a name.

2.7.3 Modular Programming Through Procedures

SuperBlocks provide a means for a variety of modular programming styles. The
Procedure SuperBlock represents a generated software procedure, which is called
as a standalone function. As in hand coding, the contents of a procedure represent
a function. That function may contain calls to other functions, resulting in a
hierarchy of procedures, each calling procedures below it. Similarly, the
SystemBuild environment uses a hierarchy of SuperBlocks. Six types of Procedure
SuperBlocks can be used to obtain the desired code results: Standard, Inline,
Macro, Background, Interrupt, and Startup. For simulation and code generation,
SuperBlocks are grouped into subsystems, by rate or by SuperBlock type (for
example, Procedure or triggered). For example, all msec SuperBlocks comprise
one subsystem, all Standard procedures comprise another system, and so forth.

Standard Procedures — Are reusable and re-entrant. They can be nested in any
Discrete, Triggered, or Procedure SuperBlock.
49

MATRIXX 7.0
AutoCode User’s Guide
Inline Procedures — Generate inlined code which provides modular design and
optimization at code generation time. Unlike other classes of Procedure
SuperBlocks, an Inline Procedure is treated as part of the parent subsystem,
not an individual subsystem. The primitive blocks nested within an Inline
Procedure are merged into the subsystem of the parent SuperBlock. As a
result, use of Inline Procedures can result in a different block execution order
and can help eliminate potential algebraic loops. This also reduces AutoCode
generated code size and procedure call overhead for nested Procedure
SuperBlocks.

Macro Procedures — Allow the programmer to substitute a user-supplied macro
statement in place of a call to a generated procedure. This allows you to
directly call a special I/O or utility function from the generated code, but
execute equivalent behavior modeled with SystemBuild blocks at Simulation
time.

Background Procedures — Contain tasks that are performed when the system is
otherwise idle.

Interrupt Procedures — Contain computations performed within an asynchronous
Interrupt Service Routine (ISR) in a real-time environment.

Startup Procedures — Contain initialization calculations and assignments
performed prior to the start of simulation or just after system hardware
initialization in a real-time environment.

Example 2-5 Sample Generated Code from a Discrete SuperBlock Procedure

/******* Procedure: graphical_coding *******/
void graphical_coding(struct _graphical_coding_u *U

,struct _graphical_coding_y *Y
,struct _graphical_coding_info *I

)
{

RT_INTEGER *iinfo = &I->iinfo[0];
/***** Local Block Outputs. *****/

RT_FLOAT graphical_coding_1_1;

/***** Output Update. *****/
/* ---------------------------- Gain Block */
/* {graphical_coding..1} */
graphical_coding_1_1 = 5.0*U->triple_a;
/* ---------------------------- Summer */
/* {graphical_coding..2} */
Y->ccc = graphical_coding_1_1 - U->triple_b;
50

2

2
Using AutoCode
iinfo[1] = 0;
EXEC_ERROR: return;
}

Note that variables, as in software, can be scoped locally to the procedure, or
globally. A local scope signal is data represented as a stack variable, while a global
scope signal is data represented by a global variable, with assigned memory
address, if needed. In this example, the inputs aaa and bbb are locally scoped,
while the output ccc is scoped as a global. In the code, since ccc is global, it is not
required as an argument of the procedure.
51

MATRIXX 7.0
AutoCode User’s Guide
52

3

Using AutoCode with

BetterState
This chapter explains how to use AutoCode with SystemBuild models that have
BetterState charts. For more information about BetterState, see the
“BetterStateChart Block” chapter in the SystemBuild User’s Guide, the BetterState
User’s Guide, and the “BetterStateChart Block” topic in MATRIXX Help.

3.1 Procedural and Event-Driven BetterState Charts

AutoCode provides support for procedural BetterState charts and event-driven
BetterState charts, but certain limitations and distinctions have to be considered:

■ A procedural BetterState chart is generated as a callout within the C or Ada
procedure implementing the containing subsystem. The procedural
BetterState chart can be in any subsystem type other than continuous.

■ For event-driven BetterState charts, each chart instance is generated as a
unique subsystem, implemented by a C or Ada procedure. An event source
must be a system external input. Wrappers are generated on a per-pin basis
for each external input pin driving an event-driven chart’s trigger input.

NOTE: Event-driven BetterState charts can be in any SuperBlock type.
53

MATRIXX 7.0
AutoCode User’s Guide
Figure 3-1 illustrates an example system with both an event-driven chart and a
procedural chart.

3.2 Generating Code for a BetterStateChart Block

Generating code for the SystemBuild model CONTROLLER, as shown in
Figure 3-1, gives us the following:

■ The main subsystem containing block code for the integrator, signal path,
limiter, and PROCEDURAL CHART (a callout).

■ The event-driven chart (EVENT CHART) subsystem, which is primarily a
callout to functions inside a BetterState wrapper file.

Figure 3-1 Model with BetterState Event-Driven and Procedural Charts
54

3

3
Using AutoCode with BetterState
■ A hook paired with the external input driving the event-driven chart.
(Invoking it calls the dependent event-driven chart.)

■ BetterState code conforming to AutoCode style implementing the charts (of
both types).

■ The BetterState wrapper which lies, figuratively, between AutoCode and the
BetterState code for the event chart.

Figure 3-2 shows this process graphically.

Example 3-1 shows the block code for PROCEDURAL CHART in the Main
subsystem. Example 3-2 shows excerpts from the actual generated code for the
EVENT CHART (event-driven chart) subsystem.

Example 3-1 Block Code for PROCEDURAL CHART in the Main Subsystem

/* BetterState Chart Block */
/* {PROCEDURAL_CHART.4} */
if(INIT) {

CHRT_PROCEDURAL_CHART_BSInit(&PROCEDURAL_CHART_4_bs, U->event1_1,
&PROCEDURAL_CHART_1);

}
CHRT_PROCEDURAL_CHART(&PROCEDURAL_CHART_4_bs, U->event1_1,

&PROCEDURAL_CHART_1);

Figure 3-2 Code Generation for BetterState Event-Driven and Procedural Charts
55

MATRIXX 7.0
AutoCode User’s Guide
Example 3-2 Generated Code for EVENT CHART Subsystem

/******* Subsystem 1 *******/
void subsys_1(struct _Subsys_1_in *U, struct _Subsys_1_out *Y,

RT_INTEGER EVENT_ID) {
if (SUBSYS_PREINIT[1]) {

/* ---------------------------- BetterStateChart Block */
/* {EVENT_CHART.12} */

CHRT_EVENT_CHART_init_wrp(&EVENT_CHART_12_bs, TIME, U->event1_1,
&Y-> chart_out1, &Y->chart_out2);

return;
}
/***** Event Update *****/
if(EVENT_ID) {

switch(EVENT_ID) {
case 2 :
/* ---------------------------- BetterStateChart Block */
/* {EVENT_CHART.12} */
CHRT_EVENT_CHART_event_wrp(&EVENT_CHART_12_bs, EVENT_ID-1, TIME,

U->event1_1, &Y->chart_out1,
&Y->chart_out2);

break;
}

}
}

The generated code in this example creates two wrappers: one for the external
input monitor (shown in Example 3-3) and one for the EVENT CHART subsystem
(shown in Example 3-4).

Example 3-3 Wrapper Code for External Input Monitor for CONTROLLER

/*** Wrapper for External Input Monit 1 `CONTROLLER_1` ***/
void wrap_extin_monit_1() {

static RT_INTEGER reentering=FALSE;
if(reentering) { Signal_An_Error(1); return; }
reentering = TRUE;
wrap_echart_subsys_1(2);
reentering = FALSE;

}

Example 3-4 Block Code for EVENT CHART Subsystem

/*** wrapper for EVENT CHART subsys_1 ***/
void wrap_echart_subsys_1(RT_INTEGER EVENT_ID) {

RT_INTEGER status;
if(TASK_STATE[1] != BLOCKED) { Signal_An_Error(1); return; }
TASK_STATE[1] = RUNNING;
Update_DS_With_Externals();
subsys_1_in.event1 = sys_extin.event1;
subsys_1_in.event1_1 = sys_extin.event1_2;
SUBSYS_TIME[1] = ELAPSED_TIME;
subsys_1(&subsys_1_in, ss1_outw, EVENT_ID);
if(ERROR_FLAG[1] == OK) {
56

3

3
Using AutoCode with BetterState
Update_Outputs(1); TASK_STATE[1]=BLOCKED;
}
System_Extout_Copy();
if ((status = External_Output ()) != OK) { Signal_An_Error(1); return;}

}

3.2.1 Handling BetterState Charts That Call Procedures

If your BetterState chart (event-driven or procedural) calls one or more
procedures, then the BetterState code must call AutoCode procedures. This is
handled by generating a special wrapper known as the BSAPI or BESTAPI around
each procedure called by a BetterState chart.

The API is scalar and of an agreed-upon form so that BetterState code can
generate the proper calls. The BSAPI layer is generated automatically by
AutoCode for each procedure marked by the Analyzer as needed by BetterState.

The BSAPI wrapper is similar but not identical to the SDK wrapper created in a
previous release. For information about the SDK, see Appendix B.

3.2.2 Handling BetterState Charts That Read or Write Variable Blocks

If your BetterState chart (event-driven or procedural) reads or writes variable
blocks, AutoCode uses API calls to identify the given WriteVariable or
ReadVariable block. These API calls account for potential name mangling issues,
since BetterState can only use the unmangled name. For additional information
about variable blocks, see the SystemBuild User’s Guide or the MATRIXX Help.

This process leads to the creation of several interrelated files. For example,
consider a model with two procedural charts and two AutoCode procedures
(called from the chart code). Generating code for Ada produces the following
files:

CHRT_best_chart1.a Chart code

CHRT_best_chart2.a Chart code

proc1_.a Procedure specification

proc1.a Procedure body

proc1_bsapi_.a BSAPI for procedure

proc2_.a Procedure specification

proc2.a Procedure body
57

MATRIXX 7.0
AutoCode User’s Guide
You can then use the acmake command to generate a makefile that automatically
rebuilds all out-of-date objects and then relinks the executable. You can use the
acmake command to complete an incremental build (Ada only) or a full build. For
example:

You can use the clean option to remove all build objects from a directory:

3.3 Using BlockScript User Code

The BetterStateChart block is a reference to a BetterState chart that you create in
BetterState. In a BetterState chart, you choose a language for the user code in a
chart (for example, BlockScript). The inputs and outputs to the block are input
and output chart arguments that you must define in the Data Dictionary. For
additional information about the BetterStateChart block , see the MATRIXX Help.

You provide code for state actions, transition conditions, and transition actions, or
you can define an action as an invocation of a SystemBuild procedure SuperBlock.
For this user code, you can use chart arguments or variables. You also must define
all variables that you use in conditions and actions in BlockScript in the Data
Dictionary. For additional information about the Data Dictionary, see the
BetterState User’s Guide.

proc2_bsapi_.a BSAPI for procedure

model_.a Model for global specification

model.a Model for global body

model_ss1.a Subsystem 1 body

acmake update -f model.mak Incremental build for Ada only (the C
makefile automatically determines whether
to do an incremental or full build)

acmake -f model.mak Full build for Windows

acmake -f model.mk Full build for UNIX

acmake clean -f model.mak Deletes all build generated files from the
directory
58

4

Managing and Scheduling

Applications
This chapter details the management of the application control flow via the real-
time scheduler. Topics include scheduler operation sequence, subsystem
properties, subsystem interruption, and examples of scheduler operation.

4.1 Real-Time Application Scheduler

AutoCode builds the scheduler as part of the real-time application program by
means of the template file. The scheduler performs overall direction and control
of inserting inputs, scheduling tasks, posting outputs, and dispatching the tasks
that perform the work of the real-time system. Although you can tailor the
scheduler as well as other parts of the code, the intention of this program is to
provide a generic real-time scheduler, combining high performance with
deterministic, prioritized, pre-emptive scheduling of application tasks that have
different timing requirements.

The application scheduler operates on the principle of rate-monotonic scheduling,
deriving priorities for the tasks from the repetition rate for periodic subsystems
and the timing requirement for triggered subsystems. The algorithm assigns
higher priority to the faster sample rate or timing requirement subsystems and
lower priority to slower ones (see Figure 4-1, p.60). The rate-monotonic algorithm
maximizes the number of tasks that get to complete their operations in a given
time. Using the rate-monotonic algorithm, all periodic tasks complete their
operations if CPU task utilization does not exceed about 70%.
59

MATRIXX 7.0
AutoCode User’s Guide
For consistent and deterministic operation in a real-time environment, the task
subroutines are scheduled and dispatched as encapsulated objects, which accept
inputs and post outputs strictly under control of the scheduler. For this reason, all
external input and output operations are handled by the scheduler directly and
inter-task data transfer is performed via input sample and hold. The scheduler is
re-entrant except for the critical section, which must not be interrupted. The
scheduler can be called externally by means of an interrupt handler (for real-time
applications) or by a background task (for simulation).

4.1.1 Subsystems

The term subsystem refers to the entities that are scheduled and dispatched for
execution by the generated scheduler. The terms subsystem and task can be used
interchangeably. By definition, a subsystem is an independently-scheduled
program object, consisting of a single computational thread, which accepts inputs
and posts outputs under the control of the scheduler at scheduler-specified times
and which can be pre-empted.

Subsystems are constructed by AutoCode from all SuperBlocks in a system that have
the same computational timing requirements or attributes (sample rates, skew, timing
requirements, enable signals, and triggers). AutoCode has four types of subsystem:

Figure 4-1 Rate-Monotonic Scheduling Algorithm

pr
io

rit
y

Shorter

sample period or
timing requirement

longer sample period,
lower priority

Longer

Lower

Higher

short sample period,
high priority

Continuous subsystem Dispatched every time the dispatcher is invoked.

Free-running periodic
subsystem

Executed repetitively at a fixed frequency.
60

4

4
Managing and Scheduling Applications
Throughout this discussion, the behavior of the scheduler and of the subsystems
is explained in terms of interrupts or scheduler interruptions. These interruptions
are implementation-dependent, involving a hardware timer interrupt, a wakeup
call, or some other method of invoking the scheduler. The operation of the
generated code is the same, regardless of which method of invoking the scheduler
is used.

4.1.2 Flow of Control in the Generated Program

On start-up, initialization software (part of the standalone utilities) establishes a
wakeup interrupt timing, time lines, priority queues, and initial conditions for the
pre-emptible subsystems, and the manager/scheduler enters a ready state. As

Enabled periodic
subsystem

Executed repetitively, but only while its enabling
signal remains active.

Triggered subsystem Executed as and when its trigger is detected.
61

MATRIXX 7.0
AutoCode User’s Guide
illustrated in Figure 4-2, initial entry is to the background, which waits for the
first interrupt or other wakeup action.

When the wakeup is received, the interrupt handler saves the interrupted context,
if necessary, and passes control to the manager/scheduler. The scheduler checks
external inputs and establishes a list of subsystems to be dispatched. It then posts

Figure 4-2 Flow of Control in the Generated Program

Any subsystems

Initial Entry

Background

Interrupt
Handler

Manager/
Scheduler

Pre-emptible
Subsystem

Any new

New

Pre-emptible
Subsystem

Finished or
Interrupt

A

Interrupt

Finished

Yes
No

Any

Yes

No

interrupted
subsystems

A

Main
Function/

subsystems
scheduled

Yes

No

Initialization

Dispatcher

Finished or
Interrupt

Finished or
Interrupt

Restore most
recently

interrupted
subsystem

Interrupt

Dispatcher

?

than the most recently
interrupted system

ready to be dispatched

with higher priority
62

4

4
Managing and Scheduling Applications
any external outputs and performs certain housekeeping before passing the
dispatch list to the dispatcher.

The dispatcher is basically a big switch that passes control to the subsystem in the
dispatch list that has highest priority. It always checks to see if there are any
previously dispatched, but interrupted, subsystems with higher priority before
dispatching a newly scheduled subsystem from its dispatch list. If there are, the
most recently interrupted subsystem (which should be of highest priority among
previously interrupted subsystems and newly scheduled subsystems) is restored
by the interrupt handler and allowed to continue.

When the subsystem is finished, it passes control back to the dispatcher, which
dispatches or restores the next-highest-priority subsystem, and so on. If all the
currently dispatched subsystems and previously interrupted subsystems finish
before a new timer interrupt is received, the interrupt handler returns control to
the background. However, if a subsystem is still processing when the next
timer interrupt is received, control passes to the interrupt handler, which again
passes control to the manager/scheduler, which executes again.

In the case of Ada code with tasks representing subsystems, the dispatcher
simultaneously dispatches all tasks that are ready. The Ada tasks have priorities
associated with them which determine the CPU availability for each task.

If the manager/scheduler has nothing to schedule at the next timer interrupt, the
scheduler passes control back to the interrupt handler. The interrupt handler then
restores whatever was running at the time of the interrupt. If any subsystems or
the dispatcher were interrupted part-way through their execution, the interrupt
handler passes control back to whatever was running (subsystem or dispatcher)
at the time of the interrupt. If no such dispatchers or subsystems remain, control
returns to the background.

4.2 Sequence of Scheduler Operations

Figure 4-3, p.65 illustrates the sequence of operations of the real-time application
scheduler. The scheduler is represented as a bubble diagram (although it is not
strictly a finite state machine), because during the “dispatch subsystems” phase
(Bubble 9 in Figure 4-3), operations can be interrupted. During the critical section,
however (Bubbles 1-8), it operates in the manner of a state machine. In the
63

MATRIXX 7.0
AutoCode User’s Guide
discussion that follows, the term scheduler is sometimes used to refer to the
critical section and dispatcher refers to the interruptible section.

Because the first eight steps in the scheduler's operation are non-interruptible,
critical steps, it is a Wind River policy to optimize critical code for maximum
performance and to execute in the same amount of time on every cycle. This
minimizes output jitter and avoids performance problems.

1. Read External Inputs

Bubble 1: On entry or re-entry, the scheduler collects the system external
inputs so they can be used by the scheduled subsystems without a minor
cycle delay. By definition, the minor cycle time of the application is the
minimum scheduler cycle, a timing interval created from the sampling rates
and timing requirements of all of the SuperBlocks in the system. The
scheduler executes exactly once during each minor cycle.

2. Check Triggers and Enables

Bubble 2: The scheduler prepares for scheduling the subsystems by first
determining which triggered and enabled subsystems are eligible to execute
during this minor cycle. This step is not performed for systems that have no
enabled or triggered subsystems. For enabled subsystems, the scheduler
checks the subsystem state. If the state is blocked (that is, ready to run but
waiting for an enable signal), the subsystem is ready to execute. If the enable
signal is set, the scheduler queues it for execution.
64

4

4
Managing and Scheduling Applications
Figure 4-3 Scheduler Operation

At the start of every Minor Cycle

2

4

6 Signal

8 Subsystem Input

Critical

Required Step
Conditional Step

Secondary Processors in

9
Subsystems
Dispatch

Sample & Hold

Elapsed Time
7

Remote
Dispatch*

External5 Write
Outputs

Subsystems

Queue
3 Clear Ready

Signals
Enable/Trigger

Inputs
1 Read External

Key:

Interruptible
Section

Section

The Scheduler Proper
Required Step

Steps Duplicated in

Multiprocessing Environment*

Executes only if
Required

* If available on system

Update

Check

Schedule

(Expanded later)
65

MATRIXX 7.0
AutoCode User’s Guide
However, if the subsystem is in an idle state and the enable signal is true, the
subsystem scheduler must determine whether the correct time has arrived for
this subsystem to execute. If it is not yet time, the subsystem waits in the idle
state until it is time to execute. See 4.3.2 Enabled Periodic Subsystems, p.71 for
further details.

For triggered subsystems, if the trigger signal is true, the scheduler checks the
subsystem state and proceeds appropriately for the subsystem type. At this
stage, when a triggering signal is received and the triggered subsystem is in a
blocked state waiting for a trigger, the scheduler queues it for execution. If the
triggered subsystem is in an idle state, the subsystem is also queued for
execution, but the outputs are posted or not posted, depending on the type of
the subsystem. See 4.3.3 Triggered Subsystems, p.74 for further details.

3. Clear the Ready Queue

Bubble 3: The scheduler clears the ready queue for all the subsystems. The
ready queue is established by the scheduler in Bubble 4 and used in Bubble 8
to determine which subsystems are to have their input sample-and-holds
updated.

4. Schedule the Subsystems

Bubble 4: The scheduling algorithm is performed. For scheduling each of the
subsystems, the scheduler checks for timing overflow (when a subsystem is
still running, even though it is time to start running its next cycle; that is, the
duration of the subsystem’s execution has lasted longer than its cycle time).
For each subsystem, the scheduler also checks all the criteria that determine
whether the subsystem is to be dispatched.

These criteria are:

● Continuous

The continuous task is dispatched (through the integrator) every time the
dispatcher is invoked.

An element of the scheduler is the Integrator (see Figure 4-4, p.68). It
performs continuous, fixed-step integration of states and implicitly
dispatches the continuous subsystem to perform the state and output
updates. The integrator/continuous task pair is by default treated as the
fastest task to be dispatched by the scheduler. You can also specify the
rate with the -csi option, but it must be at least as fast as the fastest
periodic task in the model. For details regarding continuous code
generation, see Chapter 5.

● Free-Running Periodic
66

4

4
Managing and Scheduling Applications
The appropriate time has arrived, as determined by the time line table
and the elapsed time counter.

● Enabled

The correct time has arrived, the enable signal is still true, and the
subsystem was in the Idle State in the previous minor cycle (the state in
which the enable signal is true, but the correct time has not yet arrived).

or:

The enable signal has just become true and the subsystem was in the
Blocked State in the previous minor cycle (the state in which the enable
signal is false).

● Triggered

The trigger signal has transitioned from false to true since the start of the
last minor cycle. This condition is also checked for in Bubble 2. If the
triggered block type is Asynchronous, and if the subsystem is to be
dispatched by the Scheduler (that is, if the triggering signal is not an
External Input), the subsystem triggers if the triggering signal has
transitioned either from false to true or from true to false since the start of
the last minor cycle. If the triggering signal for the Asynchronous
subsystem is an External Input, the subsystem is dispatched separately
from the Scheduler; see Properties of Asynchronous Subsystems, p.78 for
details.

Based on these criteria, the scheduler builds up the ready queue and adds
the subsystems that are to execute to the dispatch list. The difference
between the dispatch list and the ready queue is that subsystems that
were on the dispatch list, but not dispatched on the previous cycle, are
brought forward on the dispatch list for dispatching on this cycle or later.
By contrast, the ready queue is cleared and built up again on every cycle.

As indicated in Bubble 4 and explained in more detail in the section that
follows, the scheduler uses the computational attributes of the
subsystems to establish the priority for dispatching the subsystems. The
computational attributes include the sample rate and the type of the
subsystem. The priority sequence established using the computational
attributes runs from fastest sample rate or timing requirement to slowest.
For a tie in sample rate or timing requirement, the priority for execution is
based on the type of subsystem, from highest to lowest:

Continuous

Free-Running Periodic
67

MATRIXX 7.0
AutoCode User’s Guide
Enabled Periodic

Triggered Asynchronous

Triggered As-Soon-As-Finished

Triggered At-Timing-Requirement

Triggered At-Next-Trigger

Using the above priority rules, the subsystems are assigned their task IDs
in the sequence 1, 2, 3, ... NTASKS, with the highest priority subsystem
getting the lowest ID number (that is, 1) and the lowest priority
subsystem getting an ID of NTASKS. NTASKS is the number of tasks in
the system and is also the name of the variable in the code which
represents that number. The task IDs are assigned at code generation
time.

5. Write External Outputs and Signal Remote Dispatch

Bubbles 5 & 6: The scheduler calls the external output routine to post all
subsystem outputs at every minor cycle. In multiprocessor implementations
only, the dispatch list and a remote dispatch signal are posted to the

Figure 4-4 Scheduler Architecture

Integrator

Scheduler

Dispatcher

Discrete Tasks

Continuous
Task
68

4

4
Managing and Scheduling Applications
secondary processors (Bubble 6) to signal the availability of the dispatch list
and mark the start of subsystem execution.

6. Update Elapsed Time and Sample & Hold

Bubbles 7 & 8: In multiprocessor implementations, every secondary
processor’s scheduler subsystem may or may not need to perform an elapsed
time update (Bubble 7), but will be required to perform a “sample and hold”
subsystem input (where the scheduler reads the inputs and latches them for
use by the subsystem, Bubble 8) and a subsystem dispatch (Bubble 9). The
scheduler updates the elapsed time counter (Bubble 7), if required. Bubble 8:
the scheduler in each processor consults the ready queue to perform a
sample-and-hold on the subsystem inputs for the subsystems that have been
added to the dispatch list. For determinacy reasons, subsystems remaining in
the dispatch list from a prior cycle will not have their inputs sampled again.
This step is the end of the critical section.

7. Dispatch Subsystems

Bubble 9: The dispatcher is re-entrant and it can be interrupted at any point in
its operations. This re-entrant step accepts the dispatch list and queues the
subroutines for execution. This step also includes the execution of
subroutines, which can be interrupted/pre-empted at any time.

4.3 Properties of Scheduled Subsystems

A scheduled subsystem is viewed as a finite state machine that is represented as a
State Transition Diagram (STD). A finite state machine always exists in exactly
one of its defined states, where it remains until some change forces it to transition
to another state. No more than one transition can take place on each cycle of the
subsystem in which the STD resides. These STDs have the same timing
conventions as other state machines in SystemBuild. The STDs are illustrated in
Figure 4-5, p.70, Figure 4-6, p.71, and Figure 4-8, p.76; associated timing diagrams
are shown in Figure 4-7, p.73 and Figure 4-10, p.78.
69

MATRIXX 7.0
AutoCode User’s Guide
4.3.1 Free-Running Periodic Subsystems

Figure 4-5 shows the operation of a free-running periodic subsystem. A free-
running subsystem is always enabled and it exists in its idle state until the
scheduler decides it is time for the subsystem to run (that is, its sample time has
arrived). At that time, the subsystem posts its outputs and enters the running
state. This also applies on start-up, when the subsystem theoretically has not yet
executed and has no outputs to post; the simulation user can control the way that
this start-up output is generated by using the sim...{initmode} command (see the
SystemBuild User’s Guide).

A subsystem accepts its inputs just before starting; this event is associated with
the transition before the running state is entered. With specified exceptions, the
subsystem posts its previous outputs at that same time (that is, just before
running). The exceptions are associated with enabled and triggered subsystems
and are shown in the State Transition Diagrams.

When a subsystem is running (that is, manipulating its outputs), the outputs of
the previous cycle are latched (double-buffered) and can be read. Note the
overflow condition that occurs when a subsystem is in the running state and it
becomes time for it to start running again. This means that it did not finish its
execution in time. This is a fatal error in systems that must operate in a real-time
environment. When the subsystem finishes, it performs the appropriate
housekeeping subsystems and then returns to the idle state; but for reasons of
determinacy, it does not post its new outputs until it is started up again.

Figure 4-5 Free-Running Periodic Subsystem as a State Machine

IDLE RUNNING
STATESTATE

1 2

2
1

1

Task Finished Executing

Time to Run;

If Time to Run Again,
OverflowRead Inputs

Previous Execution;
Post Outputs of
70

4

4
Managing and Scheduling Applications
4.3.2 Enabled Periodic Subsystems

Figure 4-6 shows the state diagram for an enabled periodic subsystem, illustrating
the blocked state during which it is disabled.

In simulation, these subsystems can be scheduled to run only on a predefined
time line established by the subsystem’s sample rate and when the subsystem is
enabled at the same time. If a disabled subsystem is enabled after its synchronous
start time in the time line, it has to wait until its next major cycle (the repetition
time of the enabled periodic subsystem) to run. The blocked state is used in the
generated code to eliminate latencies that would occur if a disabled subsystem
were to receive its enable signal several minor cycles before its synchronous start
time in the time line (its major cycle).

When the enable goes true while the subsystem is in the blocked state, the
subsystem is scheduled to run at the next minor cycle; if it has priority over other
contending subsystems, it is executed immediately, at the same minor cycle of the
real-time scheduler. The behavior of the scheduler can differ, however, depending
on whether the enable signal is generated internal to the system (as the output of
another subsystem) or presented as an external input to the system. See the timing
diagram (Figure 4-7, p.73) for these distinctions.

Figure 4-6 Enabled Periodic Subsystem as a State Machine

RUNNING
STATE

IDLE
STATE

BLOCKED
STATE

Post Outputs of Previous
Enabled;

Enable False

Task Finished

1

Post Outputs
Enabled & Time to Run;

If Time to Run Again,
Overflow

Run and Go

3

2

2

2

1

1

1

71

MATRIXX 7.0
AutoCode User’s Guide
In the example shown in Figure 4-7, the major cycle is three times as long as the
minor cycle of the system. When an external enable signal is detected at the
beginning of a major cycle, (as shown at point A); the enabled subsystem is
dispatched for execution immediately.

In Figure 4-7, item B shows the case in the generated code concerning enables that
are presented as external inputs, asynchronous to the original time line. The
scheduler attempts to process these inputs as quickly as possible. This is also
shown in Bubble 2 of Figure 4-3, p.65, where external inputs are gathered
immediately upon initialization of the scheduler, so they can be processed
without delay. In Figure 4-7 at B, in the generated code the subsystem is queued
for execution at the minor cycle following the instant when the enable signal was
detected true. Note the timing window indicated at C. During that interval, it
does not matter whether the external enable is presented synchronously with the
72

4

4
Managing and Scheduling Applications
minor cycle or before it; both the simulation and the generated code operate
identically.

At D, the signal appears at the start of a major cycle and is applied immediately.
At E, the signal appears one minor cycle after the start of a major cycle and incurs
a two-minor-cycle delay.

At F, the enable occurs one minor cycle before the beginning of the major cycle
and consequently, the delay is one minor cycle. By contrast, at points D, E, and F,
illustrating the operation of generated code, the internally generated enable signal
is also synchronized through the application scheduler. It is always delayed
exactly one minor cycle before being applied. The reason for this delay is implied

Figure 4-7 Enabled Subsystem Timing

Scheduler
Minor Cycle

Enabled Subsystem
Time Line Major Cycle

Externally Generated
Enable Signal

Subsystem Scheduling
for External Enables

Internally Generated
Enable Signal

Subsystem Scheduling
in the Internal Case

Internally Generated
Enable Signal
(Synchronous)

Subsystem Scheduling
in the Internal Case
(continued)

A

C

B

E

D

F
73

MATRIXX 7.0
AutoCode User’s Guide
in Bubble 8 of Figure 4-3, p.65. Here, input sample-and-holds are performed after
the determination of which subsystems are to be dispatched for execution on this
(the first) minor cycle, so the application of the synchronous enable in generated
code is always deferred for one minor cycle.

4.3.3 Triggered Subsystems

Figure 4-8, p.76 shows the State Transition Diagrams for triggered, asynchronous
subsystems. The types of triggered subsystems differ mainly in the manner in
which they post their outputs. Just like enabled subsystems, certain types of
triggered subsystems have a blocked state, from which they can be invoked
immediately when the trigger is detected. (By default, the trigger is defined as the
positive-going edge of the triggering signal, but provision is made in the template
files for changing it to detect a negative-going edge.) The properties of the types
of triggered subsystems are illustrated as State Transition Diagrams in Figure 4-8,
p.76, and Figure 4-9, p.77 (for asynchronous), and in a consolidated timing
diagram in Figure 4-10, p.78. These properties are summarized as follows:

At Timing Requirement
 (ATR)

Specify a timing requirement (number of
system minor cycles) in the SuperBlock
block form. The outputs are always posted
exactly that number of cycles after the
subsystem is triggered for execution. ATR is
used especially in systems where
determinacy must be guaranteed.

At Next Trigger (ANT) The subsystem only posts its outputs when
it is next triggered for execution, however
long that may be. ANT is used for modeling
certain kinds of variable rate, but repetitive
activities, such as a shaft that rotates at a
variable speed. This type of subsystem has
no blocked state.
74

4

4
Managing and Scheduling Applications
As Soon As Finished (SAF) The outputs are posted at the beginning of
the minor cycle after the subsystem finishes
running. SAF is used for maximum
performance, but might compromise
determinacy.

Asynchronous (ASYNC) If dispatched by the scheduler, the outputs
are posted at the beginning of the next
minor cycle after the subsystem finishes
running. This will occur if the triggering
signal is an output of another subsystem. If
dispatched as a result of an asynchronous
interrupt, the outputs are posted as part of
the interrupt handler, and are available to
scheduled systems immediately.
75

MATRIXX 7.0
AutoCode User’s Guide
Figure 4-8 Triggered Subsystems as State Machines

STATE
IDLE

ATR
to Post Outputs

No Trigger, but TimeTrigger Detected

Task Finished
1

& New Trigger Detected
Time to Post Outputs

New Trigger; Post Outputs
and Restart Task

New Trigger,

3

22

1
1

1

RUNNING
STATE

IDLE
STATE

IDLE
STATE

RUNNING
STATE

SAF

STATE

STATE
RUNNING

STATE
BLOCKED

2

Overflow

Task Finished

New Trigger, Overflow

Trigger Detected

6
1

1

5

2

BLOCKED
No Trigger;

Post Outputs

1

9
2

1

1

8
New Trigger; Post Outputs

and Restart Task

Task Finished

AT TIMING REQUIREMENT (ATR)

AT NEXT TRIGGER (ANT)

AS SOON AS FINISHED (SAF)

New Trigger,
but not yet
time to post
outputs

New Trigger,

Overflow
76

4

4
Managing and Scheduling Applications
In Figure 4-10, p.78, a timing requirement equal to four scheduler minor cycles
has been established. When the trigger signal is received, the subsystem is started
at the next scheduler minor cycle (point A1). In this example, although the timing
requirement is four (point A2), the subsystem actually completes execution in
slightly less than three cycles. This illustrates the kinds of output posting:

■ ASYNC - The output is seen at point B, three cycles after the subsystem was
started, assuming this subsystem was dispatched by the scheduler.

■ SAF - The output is seen at point B, three cycles after the subsystem was
started.

■ ATR - The output becomes available at point C, exactly four cycles after start-
up.

■ ANT - The output is not available until point D, when the subsystem is next
triggered for execution.

Figure 4-9 ASYNCHRONOUS Triggered Subsystems as State Machines

STATE
IDLE

ASYNC
Post Outputs
No Trigger;Trigger Detected

Task Finished

and Restart Task
New Trigger; Post Outputs

New Trigger,

1

STATE
RUNNING

STATE
BLOCKED

10

Overflow

ASYNCHRONOUS (ASYNC)

New Trigger,
but not yet
time to post
outputs

12

11
77

MATRIXX 7.0
AutoCode User’s Guide
4.4 Properties of Asynchronous Subsystems

Asynchronous subsystems (procedures or asynchronous trigger subsystems) are
so called because of their noncyclic or unscheduled execution in a real-time
application. These subsystems should be viewed as special purpose entities and
should be used accordingly.

The asynchronous subsystems are not directly managed or scheduled by the
application scheduler as are the synchronous subsystems. Scheduled subsystems
can execute only at the start of a scheduler minor cycle and not instantaneously

Figure 4-10 Timing of Triggered Subsystems

Timing Requirement

Scheduler Minor Cycle

Asynchronous
Trigger Detected

Output Availability
Under SAF

Output Availability
Under ATR

Output Availability
Under ANT

Asynchronous
Subsystem’s
Actual Execution

A1 A2

B

C

D

78

4

4
Managing and Scheduling Applications
(for example, at the arrival of an external event). This adds latency to the
execution of certain subsystems, which absolutely cannot wait until the next
minor cycle for execution. Asynchronous subsystems are designed to solve this
problem.

The kinds of asynchronous subsystems (see Figure 4-11, p.80) that you can
generate in an AutoCode application are:

■ Start-up procedure

■ Asynchronous subsystem

■ Interrupt procedure

■ Background procedure

4.4.1 Start-up Procedure

This procedure is defined in SystemBuild using the Start-up Procedure
SuperBlock. The purpose of this start-up procedure is to initialize the application
data at start-up time. This data includes variable block data and %variables
represented by variable blocks. It is only via the Startup SuperBlock that you can
initialize the %variables in SystemBuild at run time. Usually, the start-up
procedure is called at the system initialization phase. Refer to the SystemBuild
User’s Guide for more details on the Startup SuperBlock description.
79

MATRIXX 7.0
AutoCode User’s Guide
Figure 4-11 AutoCode Real-Time Application Execution Sequence

Interrupt Service
Routine C

System
Hardware Initialization

Background
Procedure

Interrupt Service
Routine BInterrupt Service

Routine A

AutoCode
Scheduler

TriggeredPeriodic Enabled

Power On

Interrupt Requests

Asynchronous Interrupts

Timer Interrupt

(can go to any

1

1

1

1

1

)

100 Hz 50 Hz 10 Hz

Start-up Procedure

A
B

C

80

4

4
Managing and Scheduling Applications
4.4.2 Asynchronous Trigger Subsystems

Subsystems formed by collections of Asynchronous Triggered SuperBlocks
(ATSBs) with the same triggering signal are handled differently depending upon
the source of the triggering signal.

If the triggering signal is internal to the model (that is, if the triggering signal is
not an external input), these subsystems function similarly to the Triggered - Soon
As Finished subsystems with the following exceptions:

■ The ATSB subsystems have higher priority than the SAF triggered
subsystems (that is, they are executed before other triggered subsystems).

■ The triggering signal to ATSB subsystems is double-edged; the ATSB
subsystem will be scheduled if its triggering signal transitions from low to
high or from high to low during the previous scheduler cycle. This is to
maintain compatibility with the use of these subsystems in simulation.

If the triggering signal is external to the model (that is, the triggering signal is an
external input), then the ATSB subsystem is handled specially in the template. In
this case, two pieces of code are generated; the regular (nonreentrant) triggered
subsystem code, and a small (reentrant) wrapper that is designed to function as
an interrupt service routine (ISR). This wrapper is wholly generated in the
template, and can be customized for the user’s application. In the templates
provided by Wind River, the wrapper for the ATSB subsystem does the following:

■ Checks for reentrancy, and reports an error if the wrapper is reentered. Note
that the wrapper could instead queue calls to the subsystem code, but under
no circumstances should the subsystem code be reentered.

■ Gathers the subsystem inputs from external inputs and outputs from other
subsystems.

■ Invokes the ATSB subsystem.

■ Posts the ATSB’s subsystem outputs, updating the external output structures
as necessary.

In the default template, the ATSB wrapper is a procedure requiring neither inputs
nor return values.

Note that ATSB subsystems differ from Interrupt Procedure SuperBlocks (see
Asynchronous Trigger Subsystems) in the following ways:

■ The inputs and outputs to these subsystems can be represented in the model
like those of other standard SuperBlocks without incurring processing
overhead at interrupt time.
81

MATRIXX 7.0
AutoCode User’s Guide
■ These subsystems are simulatable by the SystemBuild simulator.

■ States are supported in ATSB subsystems, but not in Interrupt Procedure
SuperBlocks.

■ Calls to Procedure SuperBlocks are supported on ATSB subsystems.

■ These subsystems are not reentrant, even though the wrapper is reentrant,
and thus can be designed in such a way to support asynchronous interrupts
that may occur before the processing of the ATSB subsystem code is complete.

For more information on Asynchronous Trigger SuperBlocks, see the SystemBuild
User’s Guide.

4.4.3 Interrupt Procedure

This procedure is defined in SystemBuild using the Interrupt Procedure
SuperBlock. The purpose of this SuperBlock is to model the Interrupt Service
Routine (ISR). This ISR model in SystemBuild is generated as an interrupt
procedure by AutoCode and can be executed on arrival of a specific interrupt
signal. Using variable blocks, implicit communication can be established to any
other subsystem in the application.

The execution of the interrupt procedure is done directly on arrival of an external
interrupt or an event; the AutoCode scheduler does not manage, monitor, or
schedule this procedure. However, since the AutoCode scheduler, as supplied,
employs rate monotonic scheduling principle, it is possible that interrupt
procedure execution will overflow the synchronous task execution. Interrupt
procedure users should keep the interrupt procedure execution time to a
minimum and should keep enough time buffer in each scheduler cycle for
possible execution of interrupt procedures. Please refer to the SystemBuild User’s
Guide for more details on the Interrupt Procedure SuperBlock description.

4.4.4 Background Procedure

This procedure is defined in SystemBuild using the Background Procedure
SuperBlock. The purpose of the background procedure is to represent the logic
executed when the system is idle, in the background mode of operation. Typically,
the background procedure should be executed as the lowest priority task and
only if no other tasks need to be performed in the system. Please refer to the
SystemBuild User’s Guide for more details on the Background Procedure
SuperBlock description.
82

4

4
Managing and Scheduling Applications
4.5 Reentrancy and Preemption: The Dispatcher

The generated application program is interruptible except at the critical section of
the scheduler. The scheduler is automatically created by AutoCode, using the
template file, to provide input/output calls, scheduling, error handling, and
dispatching services for the generated application program. All the services,
except for dispatching of the subsystems, are performed in the critical section. The
critical section is kept as brief as possible; one of several reasons for this
minimization is to allow maximum time for the subsystems to execute.

The subsystems operate under different constraints as compared to those of the
time-critical scheduler. A subsystem cannot execute more frequently than the
scheduler does and in many cases, it will run far less often. However, the
subsystem may require considerable time for each execution pass. Consequently,
it can be interrupted repeatedly by scheduler execution. Thus, the subsystem code
must be completely interruptible. It must be able to be interrupted by the
scheduler and thus to be pre-empted by higher priority subsystems. It must also
be able to restart at any point in its operations.

The only timing requirement of the subsystem is that it must finish executing
before the next time it is to be queued for execution. A subsystem being ready to
run and simultaneously not finished running, defines the condition called
“subsystem timing overflow.” This is a catastrophic error in any system that
requires deterministic operation.

The scheduler can add subsystems to the dispatch list at any cycle of the
scheduler’s operations. However, the dispatcher only removes the subroutine
from the list when the subsystem has begun its operations. Determinacy and
proper operation of a pre-empted subsystem both demand that the inputs receive
a sample-and-hold to a subsystem only once per execution, when first queued. As
a result, a second list, the ready queue, is employed to determine which
subsystems will have their inputs sampled and held this cycle. The ready queue is
cleared and set up by the application scheduler once every minor cycle.

When the ready queue is cleared, the scheduler determines which subsystems are
to be queued for dispatch this cycle and places the subsystems into the ready
queue and the dispatch list. Note that the scheduler never removes a subsystem
from the dispatch list; only the dispatcher has that duty. The following examples
explore these ideas graphically, following the scheduler and dispatcher through a
few cycles of operation, showing how the subsystem states, the ready queue, and
the dispatch list change over time.
83

MATRIXX 7.0
AutoCode User’s Guide
Other examples show the operation of a scheduler with more complex timing
requirements (“pseudo-rate scheduler”) and its special conditions and error
conditions.

4.6 Scheduler Examples

The examples presented in the subsections that follow describe scheduler
operation both when sampling rates and timing requirements for all subsystems
are common multiples and when they are not common multiples, thus requiring a
pseudo-rate for the scheduler. Operating with skew is also discussed.

4.6.1 Dispatching and Pre-emption Example

The illustrations, starting with Figure 4-12, show a system with five subsystems:
three periodic, one enabled, and one triggered. The subsystem list identifies
84

4

4
Managing and Scheduling Applications
which subsystems are periodic, enabled, or triggered, and shows them in priority
order.

The subsystem state list identifies the state of the subsystem. The ready queue is
used by the scheduler to determine which subsystems are to have their inputs
sampled and held. When the scheduler determines that a subsystem is to be
dispatched for execution, the subsystem is placed into this list. When a subsystem
is dispatched for execution, it is removed from the list by the dispatcher. In
Figure 4-12, the subsystems are idle or blocked, each awaiting its condition to
start running.

In Figure 4-13, the time has arrived for subsystem 1 to execute and the enable
signal for subsystem 3 has been received. The numbers of the two subsystems are
entered into the ready queue in reverse order of priority and the ready count is set
to equal the number of subsystems that are ready (that is, 2). The corresponding
entries in the dispatch list are marked true. The dispatch count (which is the
pointer to the lowest priority subsystem that is ready for dispatch) is set to 3. The

Figure 4-12 Scheduler Data Structures at Initialization: 1

Subsystem List

1

2

3

4

5

PERIODIC

PERIODIC

ENABLED

TRIGGERED

PERIODIC

Subsystem State

1

2

3

4

5

IDLE

IDLE

BLOCKED

BLOCKED

IDLE

Dispatch List

1

2

3

4

5

FALSE

FALSE

FALSE

FALSE

FALSE

Ready Queue

EMPTY

Highest Priority

Lowest Priority

READY COUNT = 0

DISPATCH COUNT = 0
85

MATRIXX 7.0
AutoCode User’s Guide
immediate effect of this is that the inputs for subsystems 1 and 3 are sampled and
held, and control is passed to the dispatcher.

The action of the dispatcher is shown in Figure 4-14, where subsystem 1 (the
highest priority subsystem) is actually executing and subsystem 3 is waiting to be
dispatched. The dispatch count is still equal to 3, pointing to the subsystem of
lowest priority that is still either running or in the dispatch list. When subsystem
1 completes its operations (is no longer running), the system moves to the state
shown in Figure 4-15.

Figure 4-13 Scheduler Data Structures: 2

Subsystem State

1

2

3

4

5

RUNNING

IDLE

RUNNING

BLOCKED

IDLE

Dispatch List

1

2

3

4

5

TRUE

FALSE

TRUE

FALSE

FALSE

Ready Queue

3

SUBSYSTEMS 1 and 3 READY

READY COUNT = 2

DISPATCH COUNT = 3

1

Figure 4-14 Scheduler Data Structures: 3

Subsystem State

1

2

3

4

5

RUNNING

IDLE

RUNNING

BLOCKED

IDLE

Dispatch List

1

2

3

4

5

FALSE

FALSE

TRUE

FALSE

FALSE

SUBSYSTEMS 1 and 3 DISPATCH COUNT = 3
RUNNING
86

4

4
Managing and Scheduling Applications
In Figure 4-15, subsystem 1 is marked idle in the subsystem state table and
subsystem 3 is dispatched and running. All the entries in the dispatch list are
marked false, indicating that no subsystems currently need to be dispatched.
However, the dispatch count pointer is still pointing to subsystem 3, indicating that it
is not finished executing. Now, while subsystem 3 is still working, a scheduler
interruption occurs.

The scheduler is re-entered and, as a part of the scheduling loop, subsystems 1, 2,
and 5 are all marked ready (see Figure 4-16). Subsystems 1, 2, and 5 have been
entered into the subsystem state list as running and the interrupted subsystem 3
remains in a running state. Therefore, subsystems 1, 2, and 5 are placed in the
ready queue to have their inputs sampled and held. Note that subsystem 3 cannot
be placed in the ready queue, because it has already received its inputs for this

Figure 4-15 Scheduler Data Structures: 4

Subsystem State

1

2

3

4

5

IDLE

IDLE

RUNNING

BLOCKED

IDLE

Dispatch List

1

2

3

4

5

FALSE

FALSE

FALSE

FALSE

FALSE

SUBSYSTEM 3 RUNNING DISPATCH COUNT = 3
87

MATRIXX 7.0
AutoCode User’s Guide
operations cycle. Now, subsystem 1 and then subsystem 2 will be dispatched for
execution.

When subsystems 1 and 2 are both finished (see Figure 4-17), the dispatcher notes
that subsystem 3 is in a running state, but is not in the dispatch list. The
dispatcher checks its records and determines that subsystem 3 was actually in
the process of executing when the next scheduler cycle occurred. Thus, the
subsystem needs to have its context restored by the interrupt handler, not by the
real-time application scheduler. Therefore, the scheduler dispatcher performs an

Figure 4-16 Scheduler Data Structures: 5

Subsystem State

1

2

3

4

5

RUNNING

RUNNING

RUNNING

RUNNING

IDLE

Dispatch List

1

2

3

4

5

TRUE

TRUE

FALSE

TRUE

FALSE

Ready Queue

5

SUBSYSTEMS 1, 2, and 5

READY COUNT = 3

DISPATCH COUNT = 5

1

2

ARE MARKED RUNNING
88

4

4
Managing and Scheduling Applications
exit, which passes control back to the operating system interrupt handler. The
interrupted subsystem is restored from there.

When subsystem 3 is finally finished executing, as shown in Figure 4-18,
subsystem 5 is dispatched and executes.

Finally, when subsystem 5 is also finished, the situation is as represented in
Figure 4-19. At this point, no subsystems are running, nothing is to be dispatched,
and the next interruption for scheduler operation is sometime in the future. The

Figure 4-17 Scheduler Data Structures: 6

Subsystem State

1

2

3

4

5

IDLE

IDLE

RUNNING

RUNNING

IDLE

Dispatch List

1

2

3

4

5

FALSE

FALSE

FALSE

TRUE

FALSE

SUBSYSTEMS 3 and 5 DISPATCH COUNT = 5
ARE RUNNING

Figure 4-18 Scheduler Data Structures: 7

Subsystem State

1

2

3

4

5

IDLE

IDLE

IDLE

RUNNING

IDLE

Dispatch List

1

2

3

4

5

FALSE

FALSE

FALSE

FALSE

FALSE

SUBSYSTEM 5 IS RUNNING DISPATCH COUNT = 5
89

MATRIXX 7.0
AutoCode User’s Guide
dispatcher responds by passing control to the operating system interrupt handler,
which restores and passes control to the background subsystem.

This background subsystem consists of interruptible code that does not return,
but waits to be interrupted. It might be nothing but a loop that waits to be
interrupted, or it might perform any of a range of low-priority program tasks,
such as self-diagnosis and updating displays. For example, some Interactive
Animation displays are updated by the background subsystem.

Figure 4-19 Scheduler Data Structures: 8

Subsystem State

1

2

3

4

5

IDLE

IDLE

IDLE

IDLE

IDLE

Dispatch List

1

2

3

4

5

FALSE

FALSE

FALSE

FALSE

FALSE

ALL SUBSYSTEMS ARE IDLE DISPATCH COUNT = 0
90

4

4
Managing and Scheduling Applications
The operation of the scheduler and the subsystems in this example are shown in
the form of a timing diagram in Figure 4-20. The numbers in circles correspond to
the numbers at the end of each figure title associated with each of the figures for
this example.

4.6.2 Pseudo-Rate Scheduler

The previous example assumed that the repetition rate of the scheduler (the
scheduler minor cycle) was the same as the sampling rate of the fastest
subsystem, subsystem 1. This correspondence holds true only if the sampling
rates and timing requirements of all of the subsystems are common multiples.
Thus, in the example, the sampling rate of subsystem 1 might be 1 unit, the
sampling rate of subsystem 2 might be 2 units, and that of subsystem 4 might be 3
or more units.

Figure 4-20 Dispatcher Example as a Timing Diagram

Second
Interrupt
Interval TimeOperating System

Critical Scheduler

Re-entrant Dispatcher

Subsystem 1

Subsystem 2

Subsystem 3

Subsystem 4

Subsystem 5

Background

Key:
Timer Interrupt Context SwitchComputational Thread

4

7

321 86

5

(Interrupt Handler)

First Interrupt Interval
91

MATRIXX 7.0
AutoCode User’s Guide
However, if the sampling rates or timing requirements of the subsystems are not
even multiples, AutoCode establishes a “pseudo-rate” for the scheduler, based on
the least common multiple of the rates of the subsystems. The simplest case of a
pseudo-rate is shown in Figure 4-21, where there are two free-running
subsystems: subsystem 1 with a sampling rate of 2 and subsystem 2 with a rate of
3. At time step 1, the scheduler places both subsystems into the dispatch list and
they are both executed. But at step 2, the time to execute has arrived for neither of
them and nothing runs; the same thing is true at step 6. However, the scheduler
still must complete its cycle of operations, that is, the first 7 steps of Figure 4-3,
p.65, even though there is nothing ready to be scheduled. The cycles thus wasted
might have a negative impact on system performance. For this reason, use
sampling rates that are all even multiples in systems where performance is an
issue.

What happens at the beginning of step 2 depends on whether or not the
subsystems had completed running before the end of the last cycle. If a subsystem
(subsystem 2, presumably) had still been running when the scheduler
interruption occurred, at the time the scheduler completed its cycle with nothing
in the dispatch list, the dispatcher would pass control back to the interrupt
handler. The interrupt handler would invoke the operating system to restore the
interrupted subsystem and pass control to it. If all subsystems had finished
operation, then it would have been the background subsystem that was
interrupted. The operating system would restore this subsystem instead and pass
control to the background.

Figure 4-21 Dispatcher Operation with a Pseudo-Rate Scheduler

Time Step

Scheduler

Subsystem 1

Subsystem 2

1 765432

The Scheduler has nothing to schedule.

Minor Cycle
92

4

4
Managing and Scheduling Applications
4.6.3 Operating with Skew

Skew, or First Sample in the SuperBlock block form, is a method for controlling
the operation of the subsystems on the time line. The sampling interval lets you
specify the periodicity of the subsystem, and the first sample lets you establish an
offset from the beginning of the minor cycle on which the subsystem first
becomes eligible to execute. One of the uses for skew is to force a slower-rate
subsystem to execute before a faster-rate one, when either could run on the same
cycle.

As shown in Figure 4-22, at A, subsystem 1 is running at twice the sampling
interval of subsystem 2. Therefore, subsystem 1 has priority. It is assumed that
both subsystems receive external input data and that each subsystem posts
outputs to the other. At time step 1, when the system is started, both subsystems
receive as internal, sampled-and-held inputs whatever initial states you might
have defined. But at time step 3, the outputs of subsystem 2 from its first major
cycle are latched as inputs to subsystem 1 and the system is running in sync. The
outputs from subsystem 1’s operations during its secondary cycle are latched and
fed to subsystem 2 to serve as its inputs at time step 3.

From that time forward, the outputs of every major cycle of subsystem 2’s
operations are presented as inputs for the next (odd-numbered) cycle of
subsystem 1’s operations (steps 3, 5, ...). Those same inputs are still visible to
subsystem 1 on its next even-numbered cycle (steps 4, 6, ...). And subsystem 1’s
outputs from the even-numbered (minor) cycle serve as inputs to subsystem 2 on
the odd-numbered (minor) cycle (latched at steps 3, 5, ...).
93

MATRIXX 7.0
AutoCode User’s Guide
Subsystem 2 never sees the outputs of subsystem 1 from its odd-numbered cycle,
for there is no sample-and-hold performed between the end of subsystem 1’s odd-
numbered step and the beginning of subsystem 2’s operations. In the bottom part
of the figure, at B, a skew of 0.5 has been added to the timing properties of
subsystem 1 and no other change has been made. But the system will operate
quite differently from A. First, the scheduler minor cycle is now a pseudo-rate,
introduced so that the start-up of subsystem 1 can be scheduled and dispatched
correctly. Also, characteristic of pseudo-rate schedulers, there are steps where the
scheduler has no scheduling to do (steps 2, 4, 6, ...). Even so, the critical part of the
scheduler must go through its full cycle of operations. This, of course, has an
impact on overall system performance.

Observe that even though subsystem 1 would have priority, subsystem 2 starts
executing before subsystem 1 in this example, because subsystem 2’s time to run
arrives before that of subsystem 1. Thus, at step 1, subsystem 2 starts up with
initial states as its inputs and posts its outputs at time step 3 to be latched and
made inputs to subsystem 1 at time step 3.5.

Figure 4-22 Operation of Skew

Time Step

Scheduler Minor Cycle
without Skew

Subsystem 1

Subsystem 2

Scheduler Minor Cycle
with Skew

Subsystem 1

A

Subsystem 2

B

1

7Time Step 6.565.554.543.532.521.51

765432
94

4

4
Managing and Scheduling Applications
Now, as at A, subsystem 1 runs through two full cycles of its operations before
subsystem 2 can run again. When subsystem 1 starts at timestep 1.5, its outputs
are posted at timestep 2.5, and when it starts at timestep 2.5, its outputs are posted
at timestep 3.5, and so on. Unlike example A, the outputs from subsystem 1’s odd
numbered cycles are visible to subsystem 2 at time steps 3, 5, ..., and the outputs
of subsystem 2 posted at time steps 3, 5, ... are presented to subsystem 1 at time
steps 3.5, 5.5, Consequently, the subsystems are synchronized differently in the
two examples and the two systems can be expected to behave in very different
ways at the micro-level.

4.7 Scheduler Errors

The exact method for controlling the scheduler minor cycle interruptions is
implementation-dependent. In the absence of standardization of the hardware
and software for this and other functions within an embedded system, Wind
River has not attempted to furnish a timing simulator, choosing instead to
emphasize functional simulation. This is one major reason for our emphasizing
the development of rapid prototyping or test bed systems, which can help you
evaluate the performance aspects of systems where simulation cannot easily
reach. However, we can postulate two kinds of timing problems that could be
detected. The application scheduler traps both: scheduler overflow and
subsystem overflow.

4.7.1 Scheduler or Subsystem Overflow

■ Scheduler Overflow - If the non-interruptible critical section of the scheduler
is running and an interruption for the scheduler occurs, then the scheduler is
receiving more interrupts than it can handle. To prevent this, the length of the
scheduler minor cycle must be increased, the interrupt timer rate must be
decreased, or a faster processor must be obtained.

■ Subsystem Overflow - Might be intermittent or rare, might or might not be a
catastrophe in the context of a given system, and flexible means for dealing
with it are provided. Subsystem overflow is defined as a subsystem ready to
run and still not finished running. Figure 4-23 shows a graphical
representation of this condition.
95

MATRIXX 7.0
AutoCode User’s Guide
In Figure 4-23, subsystem 2 is free-running with an intermediate sampling
rate. Subsystem 1, with a shorter timing requirement and therefore higher
priority than subsystem 2, is triggered and runs only occasionally. When it
does run, at step 2, it takes a considerable amount of time. When it finishes
and subsystem 2 starts, there is not enough time for subsystem 2 to finish
before the scheduler’s interruption for step 3 is received. This would be
acceptable, because subsystem 2 is required to be interruptible. However, at
step 3, the scheduler notes that it is time for subsystem 2 to run again and
enters it into the ready queue and the dispatch list. The scheduler also notes
that subsystem 2 is not finished and that is where the problem begins. The
scheduler cannot post sample-and-hold inputs for a subsystem that is not
finished, resulting in a subsystem overflow. For some systems, the subsystem
overflow is not critical.

4.7.2 Examples Where Overflow is Irrelevant or Cannot Happen

■ A triggered subsystem with output posting As Soon As Finished cannot
overflow.

■ The background cannot overflow.

Figure 4-23 Subsystem Overflow Example

Time Step

Scheduler Minor Cycle

Subsystem 1 (Triggered)

Subsystem 2 (Free-Running)

Task State Ready Queue Dispatch List

Task 2 RUNNING

IDLE1

2

1

2

2

TRUE

FALSE

RUNNING

DISPATCH COUNT = 2

READY COUNT = 1

2 wants to start here, and breaks herebut slips to here,

4321
96

4

4
Managing and Scheduling Applications
■ In a subsystem where timing is not really critical, you might wish to disable
the overflow indication, or to give it a slower sampling rate. Provision is
made for customizing handling of the subsystem overflow error in the
template files.

Most blocks in SystemBuild operate in a largely synchronous manner, executing
once each time the subsystem is dispatched and contributing little to the
generation of intermittent overflows. Even so, several conditions can contribute to
the generation of subsystem overflows:

■ A heavy load of triggered asynchronous events (see Figure 4-23, p.96).

■ While blocks execute a user-defined number of times in a given subsystem. If
the number of iterations is variable, the amount of time to execute the
subsystem becomes nondeterministic.

■ If/else blocks have different logic depending on which branch is selected. If
some branches have significantly more processing than others, the amount of
time to execute the subsystem becomes less deterministic.

■ User-supplied I/O drivers, which have variable execution time, such as a
pulse-width-modulation driver that immediately returns if the duty cycle has
not changed. Wind River avoids this practice in its implementation systems to
the greatest degree possible.

■ Your system might be over-extended. The code that is generated for
SystemBuild blocks is optimized for performance, but any system can be
overloaded by too many tasks doing too much work in a given cycle.
Naturally, if this kind of overload occurs, the situation is likely to be
catastrophic and reasonably easy to detect. But on a heavily loaded system,
minor perturbations such as triggered subsystems or heavily loaded if/else
constructs could cause an occasional overflow, which would be hard to
debug.
97

MATRIXX 7.0
AutoCode User’s Guide
98

5

Code Generation for Discrete

Systems
This chapter introduces features of the generated code for discrete systems. This
includes scheduler architecture as it relates to discrete code generation.

5.1 Introduction

A discrete system is a model that does not contain any Continuous SuperBlocks.
The general categories are single-rate, multi-rate, and procedural discrete
systems.

Single-rate discrete system — Contains SuperBlocks that use the exact same timing
attributes.

Multi-rate discrete system — Contains SuperBlocks with different timing attributes.

Procedural discrete system — Contains only procedure SuperBlocks and therefore
has no timing attributes.

A table describing all the options that control code generation can be found
within Appendix A, AutoCode Options. For more information about the structure
and content of the generated code, see the AutoCode Reference.
99

MATRIXX 7.0
AutoCode User’s Guide
5.2 How to Generate Code for Discrete Systems

The minimum options required to generate code for a discrete subsystem are:
choice of language and top-level SuperBlock or real-time file (.rtf). This is shown
in Chapter 2.1 , Using AutoCode. Additional options are specified along with the
required options. A separate options file can be used as a replacement to specify
options directly to AutoCode.

5.3 Introduction to Vectorized Code

A vectorized discrete system is a discrete system that uses array variables in the
generated code to implement vectors for the purposes of bundling signals
together to enable loops within the generated code. The resultant vectorized code
is more efficient in terms of code size and performance as compared to the
nonvectorized equivalent. There is no need to generate vectorized code unless
you are interested in gaining performance improvements and reducing code size
on your target hardware. In other words, there is no difference in numerical
results between vectorized and non-vectorized code, but how those results are
obtained is significantly different.

By default, AutoCode generates nonvectorized code. You must specify an option
to produce vectorized code (see the -Ov entry in Table A-1, p.161). That option
controls two variations of vectorization which are summarized below.

Maximal Vectorization — This option directs AutoCode to create vectors everywhere
possible. Traceability in the generated code is reduced as only one name can
be used to represent many signals from the same block.

Label-based Vectorization — This option directs AutoCode to selectively create
vectors for only those signals that have a vector name or label as specified in
the diagram. This variation lets you specify exactly what signals are to be
generated as a vector and exactly what the name of the array is within the
generated code. Any signal that does not have a vector name or label will be
generated as a scalar variable.
100

5

5
Code Generation for Discrete Systems
5.4 Introduction to Optimized Code

AutoCode produces generated code that is nearly one-to-one compared to the
blocks used in the diagram. However, performance constraints of target hardware
require optimization of the generated code. One would expect the target compiler
to optimize the code, but many target compilers provide minimal optimization
capabilities. Therefore, AutoCode can be directed to perform some optimizations
that favor better executable code. Of course, there is a price to be paid; traceability
back to the model’s diagram is significantly reduced when optimized.

By default, AutoCode does not perform any special optimizations. You must
specify which type of optimizations you desire. Some of the optimizations are
summarized below.

Variable reuse — Reuse local variables within the code as the outputs of more than
one block.

No restart — Generate code that cannot be restarted on the target unless the object
code is reloaded.

Variable Block read propagation — Directly reference the Variable Block variable for
read operations.

Constant propagation — Blocks that compute a constant are eliminated and the
constant value is used directly.

5.5 Introduction to Procedural Code

Procedural code is the generated code for only the Procedure SuperBlocks within
a model. The code is typically used for two purposes: 1) to subsequently treat the
generated code as a module that is plugged into a much larger code stream; 2) the
first step toward linking generated code back into the SystemBuild Simulator to
improve its performance as a UserCode Block.
101

MATRIXX 7.0
AutoCode User’s Guide
5.6 Sample Generated Code

The following section contains sample generated code. The code was generated
with maximal vectorization and the no-restart optimization. Examples have been
edited to eliminate the scheduler and other code not relevant for this example.
Example 5-1 shows sample C code and Example 5-2 shows sample Ada code.

5.6.1 Sample C Code

Example 5-1 SAMPLE_MODEL.c

/**
| AutoCode/C (TM) Code Generator V7.X |
| WIND RIVER SYSTEMS INC., SUNNYVALE, CALIFORNIA |

rtf filename : SAMPLE_MODEL.rtf
Filename : SAMPLE_MODEL.c
Dac filename : c_sim.dac
Generated on : Mon Mar 17 18:26:36 2000
Dac file created on : Thu Mar 6 12:09:32 2000
--
-- Number of External Inputs : 4
-- Number of External Outputs: 8
--
-- Scheduler Frequency: 10.0
--
-- SUBSYSTEM FREQUENCY TIME_SKEW OUTPUT_TIME TASK_TYPE
-- --------- --------- --------- ----------- ---------
-- 1 10.0000 0.00000 0.00000 PERIODIC
*/

#include <stdio.h>
#include <math.h>
#include "sa_sys.h"
#include "sa_defn.h"
#include "sa_types.h"
#include "sa_math.h"
#include "sa_user.h"
#include "sa_utils.h"
#include "sa_time.h"
#include "sa_fuzzy.h"

/******* System Ext I/O type declarations. *******/
struct _Subsys_1_out {

RT_FLOAT limited_values_1[4];
RT_FLOAT limited_values_1_1[4];

};

struct _Sys_ExtIn {
102

5

5
Code Generation for Discrete Systems
RT_FLOAT SAMPLE_MODEL_1[4];
};

/******* System Ext I/O type definitions. *******/
struct _Subsys_1_out subsys_1_out = {{-EPSILON, -EPSILON, -EPSILON, -EPSILON},

{-EPSILON, -EPSILON, -EPSILON, -EPSILON}};
struct _Sys_ExtIn sys_extin;

/******** Procedures’ declarations ********/

/******* Procedure: value_added *******/

/***** Inputs type declaration. *****/
struct _value_added_u {

RT_FLOAT gainfactor_1[4];
};

/***** Outputs type declaration. *****/
struct _value_added_y {

RT_FLOAT limited_values_1[4];
};

/***** Info type declaration. *****/

struct _value_added_info {
RT_INTEGER iinfo[5];
RT_FLOAT RP[16];

};

/******** Procedures’ definitions ********/

/******* Procedure: value_added *******/

void value_added(U, Y, I)
struct _value_added_u *U;
struct _value_added_y *Y;
struct _value_added_info *I;

{
RT_INTEGER *iinfo = &I->iinfo[0];

/***** Parameters. *****/
RT_FLOAT *R_P = &I->RP[0];

/***** Algorithmic Local Variables. *****/
RT_INTEGER ilower;
RT_INTEGER iupper;
RT_FLOAT uval;
RT_INTEGER i;
RT_INTEGER k;
RT_FLOAT alpha;
103

MATRIXX 7.0
AutoCode User’s Guide
/***** Output Update. *****/
/* ---------------------------- Linear Interp */
/* {value_added..2} */
for (i=1; i<=4; i++) {

if (U->gainfactor_1[-1+i] < R_P[-2+2*i]) {
ilower = 1;
iupper = 0;

}
else if (U->gainfactor_1[-1+i] >= R_P[-1+2*i]) {

ilower = 0;
iupper = 1;

}
else {

ilower = (RT_INTEGER)((U->gainfactor_1[-1+i] - R_P[-2+2*i])/(R_P[
-1+2*i] - R_P[-2+2*i]));

iupper = ilower + 1;
}
alpha = (U->gainfactor_1[-1+i] - R_P[-2+ilower+2*i])/(R_P[-2+iupper+2*
i] - R_P[-2+ilower+2*i]);
Y->limited_values_1[-1+i] = (1.0 - alpha)*R_P[6+ilower+2*i] + alpha*
R_P[6+iupper+2*i];

}

iinfo[1] = 0;

EXEC_ERROR: return;
}

/******** Tasks declarations ********/

/******** Tasks code ********/

/******* Subsystem 1 *******/

void subsys_1(U, Y)
struct _Sys_ExtIn *U;
struct _Subsys_1_out *Y;

{
static RT_INTEGER iinfo[4] = {0, 1, 1, 1};

/***** Parameters. *****/
static RT_FLOAT R_P[8] = {4.3, 5.2, 3.5, 2.3, -4.3, -5.2, -3.5, -2.3};

/***** Local Block Outputs. *****/

RT_FLOAT gainfactor_1[4];
RT_FLOAT inverse_factor_1[4];

/***** Algorithmic Local Variables. *****/

RT_INTEGER i;
static struct _value_added_u value_added_4_u;
static struct _value_added_y value_added_4_y;
static struct _value_added_info value_added_4_i = {{0, 1, 1, 1, 1},
104

5

5
Code Generation for Discrete Systems
{-10.5, 20.5, -10.5, 20.5, -10.5, 20.5, -10.5, 20.5, -1.5, 1.5, -1.5,
1.5, -1.5, 1.5, -1.5, 1.5}};

static struct _value_added_u value_added_14_u;
static struct _value_added_y value_added_14_y;
static struct _value_added_info value_added_14_i = {{0, 1, 1, 1, 1},

{-10.5, 20.5, -10.5, 20.5, -10.5, 20.5, -10.5, 20.5, -1.5, 1.5, -1.5,
1.5, -1.5, 1.5, -1.5, 1.5}};

/***** Output Update. *****/
/* ---------------------------- Gain Block */
/* {SAMPLE_MODEL.gf1.1} */
for (i=1; i<=4; i++) {

gainfactor_1[-1+i] = R_P[-1+i]*U->SAMPLE_MODEL_1[-1+i];
}

/* ---------------------------- Procedure SuperBlock */
/* {value_added.4} */
{

RT_INTEGER k = 0;
for(k=0;k<4;k++) {

value_added_4_u.gainfactor_1[k] = gainfactor_1[k];
}

}
value_added(&value_added_4_u, &value_added_4_y, &value_added_4_i);
{

RT_INTEGER k = 0;
for(k=0;k<4;k++) {

Y->limited_values_1[k] = value_added_4_y.limited_values_1[k];
}

}
iinfo[0] = value_added_4_i.iinfo[0];
if(iinfo[0] ! = 0) {

value_added_4_i.iinfo[0] = 0; goto EXEC_ERROR;
}
/* ---------------------------- Gain Block */
/* {SAMPLE_MODEL.gf2.2} */
for (i=1; i<=4; i++) {

inverse_factor_1[-1+i] = R_P[3+i]*U->SAMPLE_MODEL_1[-1+i];
}
/* ---------------------------- Procedure SuperBlock */
/* {value_added.14} */
{

RT_INTEGER k = 0;
for(k=0;k<4;k++) {

value_added_14_u.gainfactor_1[k] = inverse_factor_1[k];
}

}
value_added(&value_added_14_u, &value_added_14_y, &value_added_14_i);
{

RT_INTEGER k = 0;
for(k=0;k<4;k++) {

Y->limited_values_1_1[k] = value_added_14_y.limited_values_1[k];
}

}
iinfo[0] = value_added_14_i.iinfo[0];
if(iinfo[0] ! = 0) {
105

MATRIXX 7.0
AutoCode User’s Guide
value_added_14_i.iinfo[0] = 0; goto EXEC_ERROR;
}

if(iinfo[1]) {
SUBSYS_INIT[1] = FALSE;
iinfo[1] = 0;

}
return;

EXEC_ERROR: ERROR_FLAG[1] = iinfo[0];
iinfo[0]=0;

}

5.6.2 Sample Ada Code

Example 5-2 SAMPLE_MODEL.a

-- AutoCode/Ada (TM) Code Generator V7.X -
-- WIND RIVER SYSTEMS INC., SUNNYVALE, CALIFORNIA -

-- rtf filename : SAMPLE_MODEL.rtf
-- Filename : SAMPLE_MODEL.a
-- Dac filename : ada_rt.dac
-- Generated on : Mon Mar 17 18:27:44 2000
-- Dac file created on : Mon Mar 10 17:03:32 2000
--
-- Number of External Inputs : 4
-- Number of External Outputs: 8
--
-- Scheduler Frequency: 10.0
--
-- SUBSYSTEM FREQUENCY TIME_SKEW OUTPUT_TIME TASK_TYPE
-- --------- --------- --------- ----------- ---------
-- 1 10.0000 0.00000 0.00000 PERIODIC
--

--- System Data ---

with SYSTEM;
with UNCHECKED_CONVERSION;
with SA_TYPES; use SA_TYPES;
with SA_DEFN; use SA_DEFN;
with SA_TIME; use SA_TIME;
package SYSTEM_DATA is

NUMIN : constant RT_INTEGER := 4;
NUMOUT : constant RT_INTEGER := 8;
ExtIn : RT_FLOAT_AY(0..NUMIN);
ExtOut : RT_FLOAT_AY(0..NUMOUT) := (others => -EPSILON);
SUBSYS_PREINIT : RT_BOOLEAN_AY(0..NTASKS);

-------- System Ext I/O type declarations. --------
106

5

5
Code Generation for Discrete Systems
type Subsys_1_out_t is record
limited_values_1 : RT_FLOAT_AY(0..3);
limited_values_1_1 : RT_FLOAT_AY(0..3);

end record;

type Sys_ExtIn_t is record
SAMPLE_MODEL_1 : RT_FLOAT_AY(0..3);

end record;

-------- System Ext I/O type definitions. --------
subsys_1_out : Subsys_1_out_t := ((-EPSILON, -EPSILON, -EPSILON, -EPSILON),

(-EPSILON, -EPSILON, -EPSILON, -EPSILON));
sys_extin : Sys_ExtIn_t;

end SYSTEM_DATA;

-------- Procedures package declarations --------
with SYSTEM;
with UNCHECKED_CONVERSION;
with SA_TYPES; use SA_TYPES;
with SYSTEM_DATA; use SYSTEM_DATA;
package value_added_pkg is

------ Inputs type declaration. ------
type value_added_u_t is record

gainfactor_1 : RT_FLOAT_AY(0..3);
end record;

------ Outputs type declaration. ------
type value_added_y_t is record

limited_values_1 : RT_FLOAT_AY(0..3);
end record;

------ Info type declaration. ------
type value_added_info_t is record

iinfo : RT_INTEGER_AY(0..4);
RP : RT_FLOAT_AY(0..15);

end record;

type value_added_u_t_P is access value_added_u_t;
function ptr_of is new UNCHECKED_CONVERSION

(SOURCE => SYSTEM.ADDRESS, TARGET => value_added_u_t_P);
type value_added_y_t_P is access value_added_y_t;
function ptr_of is new UNCHECKED_CONVERSION

(SOURCE => SYSTEM.ADDRESS, TARGET => value_added_y_t_P);
type value_added_info_t_P is access value_added_info_t;
function ptr_of is new UNCHECKED_CONVERSION

(SOURCE => SYSTEM.ADDRESS, TARGET => value_added_info_t_P);

-------- Procedure: value_added --------
procedure value_added(U : value_added_u_t_P;

Y : value_added_y_t_P;
I : value_added_info_t_P

);
end value_added_pkg;
107

MATRIXX 7.0
AutoCode User’s Guide
-------- Subsystems’ declarations --------
with SYSTEM;
with UNCHECKED_CONVERSION;
with SA_TYPES; use SA_TYPES;
with SYSTEM_DATA; use SYSTEM_DATA;
with value_added_pkg; use value_added_pkg;
package SUBSYSTEMS is

-------- Subsystem 1 Package --------
package subsys_1_pkg is

type Sys_ExtIn_t_P is access Sys_ExtIn_t;
function ptr_of is new UNCHECKED_CONVERSION

(SOURCE => SYSTEM.ADDRESS, TARGET => Sys_ExtIn_t_P);
type Subsys_1_out_t_P is access Subsys_1_out_t;
function ptr_of is new UNCHECKED_CONVERSION

(SOURCE => SYSTEM.ADDRESS, TARGET => Subsys_1_out_t_P);
U : Sys_ExtIn_t_P := ptr_of(sys_extin’address);
Y : Subsys_1_out_t_P := ptr_of(subsys_1_out’address);

procedure subsys_1;
end subsys_1_pkg;

end SUBSYSTEMS;

with SA_DEFN; use SA_DEFN;
with SA_TYPES; use SA_TYPES;
with SYSTEM_DATA; use SYSTEM_DATA;
package body SUBSYSTEMS is

package body subsys_1_pkg is separate;
end SUBSYSTEMS;

with SA_TYPES; use SA_TYPES;
with SYSTEM_DATA; use SYSTEM_DATA;
with SA_UTILITIES; use SA_UTILITIES;
separate (SUBSYSTEMS)
package body subsys_1_pkg is

SUBSYS_ID : constant := 1;

-------- Tasks code --------
iinfo : RT_INTEGER_AY(0..3) := (0, 1, 1, 1);

------ Parameters. ------
R_P : RT_FLOAT_AY(0..7) := (4.3, 5.2, 3.5, 2.3, -4.3, -5.2, -3.5, -2.3);
value_added_4_u : value_added_u_t;
value_added_4_y : value_added_y_t;
value_added_4_i : value_added_info_t := ((0, 1, 1, 1, 1), (-10.5, 20.5,

-10.5, 20.5, -10.5, 20.5, -10.5, 20.5, -1.5, 1.5, -1.5, 1.5, -1.5, 1.5,
-1.5, 1.5));

value_added_14_u : value_added_u_t;
value_added_14_y : value_added_y_t;
value_added_14_i : value_added_info_t := ((0, 1, 1, 1, 1), (-10.5, 20.5,

-10.5, 20.5, -10.5, 20.5, -10.5, 20.5, -1.5, 1.5, -1.5, 1.5, -1.5, 1.5,
-1.5, 1.5));

procedure subsys_1 is
108

5

5
Code Generation for Discrete Systems
------ Local Block Outputs. ------
gainfactor_1 : RT_FLOAT_AY(0..3);
inverse_factor_1 : RT_FLOAT_AY(0..3);

------ Algorithmic Local Variables. ------
i_2 : RT_INTEGER;

begin
------ Output Update. ------
-- ---------------------------- Gain Block --
-- {SAMPLE_MODEL.gf1.1} --
for i_2 in RT_INTEGER range 1..4 loop

gainfactor_1(-1+i_2) := R_P(-1+i_2)*U.SAMPLE_MODEL_1(-1+i_2);
end loop;
-- ---------------------------- Procedure Super Block --
-- {value_added.4} --
value_added_4_u.gainfactor_1(0..3) := gainfactor_1(0..3);
value_added(ptr_of(value_added_4_u’address), ptr_of(

value_added_4_y’address), ptr_of(value_added_4_i’address));
Y.limited_values_1(0..3) := value_added_4_y.limited_values_1(0..3);
iinfo(0) := value_added_4_i.iinfo(0);
if iinfo(0) /= 0 then

value_added_4_i.iinfo(0) := 0; raise EXEC_ERROR;
end if;
-- ---------------------------- Gain Block --
-- {SAMPLE_MODEL.gf2.2} --
for i_2 in RT_INTEGER range 1..4 loop

inverse_factor_1(-1+i_2) := R_P(3+i_2)*U.SAMPLE_MODEL_1(-1+i_2);
end loop;
-- ---------------------------- Procedure Super Block --
-- {value_added.14} --
value_added_14_u.gainfactor_1(0..3) := inverse_factor_1(0..3);
value_added(ptr_of(value_added_14_u’address), ptr_of(

value_added_14_y’address), ptr_of(value_added_14_i’address));
Y.limited_values_1_1(0..3) := value_added_14_y.limited_values_1(0..3);
iinfo(0) := value_added_14_i.iinfo(0);
if iinfo(0) /= 0 then

value_added_14_i.iinfo(0) := 0; raise EXEC_ERROR;
end if;

if iinfo(1) > 0 then
iinfo(1) := 0;
SUBSYS_INIT(1) := false;

end if;

exception
when EXEC_ERROR =>

ERROR_FLAG(1) := iinfo(0); iinfo(0) := 0;
when NUMERIC_ERROR | CONSTRAINT_ERROR =>

ERROR_FLAG(1) := MATH_ERROR;
when OTHERS =>

ERROR_FLAG(1) := UNKNOWN_ERROR;
end subsys_1;

end subsys_1_pkg;

-------- Procedures package bodies --------
109

MATRIXX 7.0
AutoCode User’s Guide
with SA_TYPES; use SA_TYPES;
with SA_DEFN; use SA_DEFN;
with SYSTEM_DATA; use SYSTEM_DATA;
package body value_added_pkg is
-------- Procedure: value_added --------

procedure value_added(U : value_added_u_t_P;
Y : value_added_y_t_P;
I : value_added_info_t_P

) is
iinfo : RT_INTEGER_AY_5_P := ptr_of(I.iinfo’address);

------ Parameters. ------
R_P : RT_FLOAT_AY_16_P := ptr_of(I.RP’address);

------ Algorithmic Local Variables. ------
ilower : RT_INTEGER;
iupper : RT_INTEGER;
uval : RT_FLOAT;
i_1 : RT_INTEGER;
k_1 : RT_INTEGER;
alpha_1 : RT_FLOAT;

begin
------ Output Update. ------
-- ---------------------------- Linear Interp --
-- {value_added..2} --
for i_1 in RT_INTEGER range 1..4 loop

if U.gainfactor_1(-1+i_1) < R_P(-2+2*i_1) then
ilower := 1;
iupper := 0;

elsif U.gainfactor_1(-1+i_1) >= R_P(-1+2*i_1) then
ilower := 0;
iupper := 1;

else
ilower := ITRUNCATE((U.gainfactor_1(-1+i_1) - R_P(-2+2*i_1))/(R_P(

-1+2*i_1) - R_P(-2+2*i_1)));
iupper := ilower + 1;

end if;
alpha_1 := (U.gainfactor_1(-1+i_1) - R_P(-2+ilower+2*i_1))/(R_P(
-2+iupper+2*i_1) - R_P(-2+ilower+2*i_1));
Y.limited_values_1(-1+i_1) := (1.0 - alpha_1)*R_P(6+ilower+2*i_1) +
alpha_1*R_P(6+iupper+2*i_1);

end loop;

iinfo(1) := 0;

exception
when EXEC_ERROR =>

null;
when NUMERIC_ERROR | CONSTRAINT_ERROR =>

iinfo(0) := MATH_ERROR;
when OTHERS =>

iinfo(0) := UNKNOWN_ERROR;
end value_added;

end value_added_pkg;
110

6

Code Generation for
Continuous Systems
This chapter discusses the scheduler architecture as it relates to continuous code
generation. Topics include fixed-step integrators, user-defined integrators, and
how to generate code for continuous and hybrid systems.

6.1 Introduction

AutoCode supports code generation for continuous or hybrid (continuous and
discrete) systems. The AutoCode scheduler supports continuous subsystems in
the same manner in which it supports discrete subsystems.

For continuous subsystems, at each minor cycle, the scheduler:

■ Schedules the continuous subsystem to run.

■ Posts continuous subsystem outputs.

■ Performs sample and hold on the continuous subsystem inputs.

■ Dispatches the continuous subsystem if ready.

■ Handles vectorization and optimization the same as for discrete systems.

An element of the scheduler is the Integrator (see Figure 6-1, p.112). It performs
continuous, fixed-step integration of states and implicitly dispatches the
continuous subsystem to perform the state and output updates. The integrator/
111

MATRIXX 7.0
AutoCode User’s Guide
continuous task pair is, by default, treated as the fastest task to be dispatched by
the scheduler.

6.2 Integrators

AutoCode supplies four fixed-step integrators:

■ First order Runge-Kutta (Euler)

■ Second order Runge-Kutta (Modified Euler)

■ Fourth order Runge-Kutta (Simpson’s 2nd rule)

■ Kutta-Merson

All of these integrators are located in the templates directory in the integrator
template file language_intgr.tpl. There is also the capability to insert a user-
supplied integrator. Instructions for using your own integrator are provided in
6.4.2 Xmath Command Options for Continuous Code Generation, p.114.

Figure 6-1 Scheduler Architecture

Integrator

Scheduler

Dispatcher

Discrete Tasks

Continuous
Task
112

6

6
Code Generation for Continuous Systems
6.3 Limitations

When using continuous code generation, keep these limitations in mind:

■ Only fixed-step integrators are supported.

■ There is a slight mismatch of sim and continuous application outputs (i.e., the
subsystem external inputs at time t and at time t+h, where h is the integration
step, are assumed to be unchanged inside AutoCode integrator algorithms).

■ Continuous task states and derivatives are always of float data type.

■ Algebraic loops are not supported.

■ Only sim initialization mode 0 (initmode 0; see sim help for details) is
supported.

■ You cannot generate procedures-only continuous code (procedure around a
top-level continuous hierarchy).

6.4 How to Generate Code for Continuous or Hybrid Systems

As described in 2.1 How to Generate Real-Time Code, p.15, using AutoCode, you can
generate C high-level language code from SystemBuild, the Xmath Commands
window, or from the operating system prompt. The subsections that follow
discuss each of these methods of code generation in terms of those options that
are unique to generating code for continuous or hybrid systems.

You need both c_sim.tpl and c_intgr.tpl template files for C or ada_rt.tpl and
ada_intgr.tpl for Ada (supplied in the templates directory). The c_sim.tpl and
ada_rt.tpl template files include continuous subsystems-related parameters and
the integrator template file. The integrator template file contains the code for the
four integrators and a stubbed routine, usrintegrator, which provides the means
for user-defined integrator implementation.
113

MATRIXX 7.0
AutoCode User’s Guide
6.4.1 Generating Code for Continuous Systems from SystemBuild

To use AutoCode while inside SystemBuild, select Tools→AutoCode on the Catalog
Browser to open the dialog. Instructions for using this dialog are in the MATRIXX
Help.

Depending on the template file used, the code generated can be either C code or
Ada code.

6.4.2 Xmath Command Options for Continuous Code Generation

The method for generating code for a continuous or hybrid system using the
Xmath command line follows the procedure described in 2.1.2 Generating Code
from Xmath, p.16. Two command line options that are unique to continuous code
generation are ialg and csi.1 Although not for exclusive use in continuous code
generation, the minsf option is useful for increasing the rate of a continuous task.
See Table 6-1 for a summary of these options.

As indicated in Table 6-1, ialg specifies the selected integrator. The option takes an
integer argument of 0, 1, 2, 3, or 4. The default integrator is the second order
Runge-Kutta.

1. For standalone AutoCode, results for generated code will not match sim unless the csi
option is not zero. Typically, set csi to 0.01, the time vector for standalone sim. Then, results
will match.

Table 6-1 Xmath Command Options for Continuous Code Generation

Option Description

ialg Specifies the integrator selection

0 = user-defined integrator

1 = first order Runge-Kutta integrator

2 = second order Runge-Kutta integrator (default)

3 = fourth order Runge-Kutta integrator

4 = Kutta-Merson integrator

csi Specifies the continuous task sample interval

minsf Specifies the minimum AutoCode scheduler frequency in seconds (0.0
is the default)
114

6

6
Code Generation for Continuous Systems
When using 0 (user-defined integrator) for this command-line option, the
integrator function should be implemented inside the function usrintegrator()
located in c_intgr.tpl for C or ada_intgr.tpl for Ada.

Because the integrator is invoked at each scheduler interval and the continuous
task is dispatched via the integrator, an implicit frequency (that of the scheduler)
is associated with the continuous task. If the system is all continuous, the
scheduler cycle is 1 Hz. For hybrid systems, the implicit frequency of the
continuous task is always the least common multiple of all of the frequencies of
the discrete tasks. For continuous only modes, the implicit frequency of the single
continuous defaults to 1 Hz. The command option csi specifies the sample
interval for a continuous task. This option is useful for adjusting the rate of the
continuous task.

The command option minsf specifies the minimum AutoCode scheduler
frequency. This option is useful for increasing the rate of a continuous task. The
real-time scheduler frequency is set to the larger value of the frequency
determined by the block diagram application and the value specified by the minsf
option. The default value for this option is 0.0, which allows the application to set
its own scheduler frequency. Deviation from this default should be approached
with caution, as a consistent scheduler frequency should normally be based on a
least common multiple of the application timing requirements.

For example, to generate code for a model with a continuous subsystem, using the
fourth order Runge-Kutta integrator method, and minimum scheduler frequency
of 300.0 Hz in file model.c, use the following Xmath command:

autocode, model="model", {ialg=3, minsf=300.0}

In this case, the autocode command automatically generates the file model.c in the
directory from which Xmath was invoked.

6.4.3 OS Command Options for Continuous Code Generation

The method for generating code for a continuous or hybrid system using the
operating system command line follows the procedure described in
2.1.3 Generating Code from the Operating System, p.17. Two command options that
are unique to continuous code generation are -i and -csi. Although not for
115

MATRIXX 7.0
AutoCode User’s Guide
exclusive use in continuous code generation, the -minsf option may be useful for
increasing the rate of a continuous task. Table 6-2 summarizes these options.

As indicated in Table 6-2, -i specifies the selected integrator. The option takes an
integer argument of 0, 1, 2, 3, or 4. The default integrator is the second order
Runge-Kutta.

When using 0 (user-defined integrator) for this command option, the integrator
function should be implemented inside the function usrintegrator() located in
c_intgr.tpl for C or ada_intgr.tpl for Ada.

Because the integrator is invoked at each scheduler interval and the continuous
task is dispatched via the integrator, an implicit frequency (that of the scheduler)
is associated with the continuous task. For hybrid systems, the implicit frequency
of the continuous task is always the least common multiple of all the frequencies
of the discrete tasks. The command option -csi specifies the sample interval for a
continuous task.

The command option -minsf specifies the minimum AutoCode scheduler
frequency. This option is useful for increasing the rate of a continuous task. The
real-time scheduler frequency is set to the larger value of the frequency
determined by the block diagram application and the value specified by the minsf
option. The default value for this option is 0.0, which allows the application to set
its own scheduler frequency. Deviation from this default should be approached
with caution, as a consistent scheduler frequency should normally be based on a
least common multiple of the application timing requirements.

Table 6-2 Operating System Command Options for Continuous Code Generation

Option Description

-i Specifies the integrator selection

0 = user-defined integrator

1 = first order Runge-Kutta integrator

2 = second order Runge-Kutta integrator (default)

3 = fourth order Runge-Kutta integrator

4 = Kutta-Merson integrator

-csi Specifies the continuous task sample interval

-minsf Specifies the minimum AutoCode scheduler frequency in seconds (0.0
is the default)
116

6

6
Code Generation for Continuous Systems
To generate code for a model with a continuous subsystem, using the fourth order
Runge-Kutta integrator method, and minimum scheduler frequency of 300.0 Hz,
use the operating system command shown in Example 6-1 (C) or Example 6-2
(Ada):

Example 6-1 Sample Operating System Command for C

% autostar -l c -i 3 -minsf 300.0 -o model.c model.rtf

Example 6-2 Sample Operating System Command for Ada

% autostar -l a -i 3 -minsf 300.0 -o model.a model.rtf

6.5 Sample Generated C Code

The following example is a file that lists the generated model and default
integrator (Runge-Kutta 2) code for the block diagram model located in the file
mws_demo.dat in the classical_demo directory located in the SystemBuild demo
distribution directory. The block diagram is shown in Figure 6-2.

The sample generated code (Example 6-3) has been edited for brevity, showing
only the most important features.

As code can change slightly from one release to the next, please refer to the
current example in your demo directory for an exact code listing.

NOTE: If you need to review the steps required to create an executable, refer to
2.5.1 Standalone Simulation, p.26.
117

MATRIXX 7.0
AutoCode User’s Guide
Example 6-3 File built_model.c

/**
| AutoGen/C (TM) Code Generator V7.x |
| WIND RIVER SYSTEMS INC., SUNNYVALE, CALIFORNIA |
**
Modelname : built_model
Filename : built_model.c
Generated on : Wed Aug 4 16:43:28 1999
Dac file created on : Tue Jul 27 20:48:17 1999
*/

#include <stdio.h>
#include "sa_intgr.h"
...
/*** System Data ***/

#define SCHEDULER_FREQ 300.0
#define NTASKS 1
#define NUMIN 0

Figure 6-2 Built_Model SuperBlock
118

6

6
Code Generation for Continuous Systems
#define NUMOUT 1
#define IALG 2

enum TASK_STATE_TYPE { IDLE, RUNNING, BLOCKED, UNALLOCATED };

enum SUBSYSTEM_TYPE { CONTINUOUS, PERIODIC, ENABLED_PERIODIC,
TRIGGERED_ANT,TRIGGERED_ATR, TRIGGERED_SAF, NONE };

...
/******* Global declarations. *******/
...
/******* System Ext I/O structs. declarations.*******/
...
/******* System Ext I/O structs. definitions.*******/
...
/**Continuous Subsystem states and info structs. declarations.**/
struct _Subsys_1_states {

RT_FLOAT system_dynamics_S1;
RT_FLOAT system_dynamics_S2;
RT_FLOAT BUILT_MODEL_2_S1;
RT_FLOAT BUILT_MODEL_2_S2;
RT_FLOAT feedforward_compensator_S1;

};
struct _Subsys_1_info {

RT_INTEGER iinfo[5];
RT_FLOAT rinfo[5];

};

/***Continuous Subsystem states and info structs. definitions.***/struct
_Subsys_1_states subsys_1_states[2] = {0., 0., 0., 0., 0., 0., 0., 0.,

0., 0.};

struct _Subsys_1_info subsys_1_info = {0, 1, 1, 1, 0, 1., 0.};
...
/******* Task’s declarations. *******/

/******* (Continuous) Subsystem 1 *******/
extern void subsys_1();

/******* Task’s code. *******/

/******* (Continuous) Subsystem 1 *******/
void subsys_1(Y, S, I)

struct _Subsys_1_out *Y;
struct _Subsys_1_states *S;
struct _Subsys_1_info *I;

{
RT_INTEGER *iinfo = &I->iinfo[0];
RT_FLOAT *rinfo = &I->rinfo[0];
RT_INTEGER INIT = iinfo[1];
RT_INTEGER STATES = iinfo[2];
RT_INTEGER OUTPUTS = iinfo[3];
RT_INTEGER CALLER = iinfo[4];
const RT_DURATION TIME = rinfo[0];

/***** Current and Next States Pointers. *****/
119

MATRIXX 7.0
AutoCode User’s Guide
struct _Subsys_1_states *X = &S[0];
struct _Subsys_1_states *XD = &S[1];

/***** Parameters. *****/
...

/***** Local Block Outputs. *****/
...

if(OUTPUTS) { /* Output Update. */
/*---------------------------- Num - Den Coeffs. */
/* {BUILT_MODEL.system dynamics.4} */
Y->system_output = 0.5*X->system_dynamics_S1;
Y->system_output = Y->system_output + 1.5*X->system_dynamics_S2;
/*---------------------------- Nth Order Integrator */
/* {BUILT_MODEL..2} */
BUILT_MODEL_2_1 = 1.4*X->BUILT_MODEL_2_S1;
/*---------------------------- Step Function */
BUILT_MODEL_8_1= 1;
/*---------------------------- Quantization */
/* {BUILT_MODEL..10} */
BUILT_MODEL_10_1 = 0.7*ROUND(Y->system_output/0.7);
sgn = SGN(Y->system_output);
ushift = fabs(Y->system_output) + 0.35;
remain = fmod(ushift,0.7);
alpha = remain - (1.0 - RELTOL)*0.7;
if (alpha > 0.0) {

BUILT_MODEL_10_1 = BUILT_MODEL_10_1 + sgn*alpha/RELTOL;
}

...
}
if(STATES) { /* State Update. */

/*---------------------------- Num - Den Coeffs. */
/* {BUILT_MODEL.system dynamics.4} */
XD->system_dynamics_S1 = 0.0;
XD->system_dynamics_S2 = 0.0;
XD->system_dynamics_S1 = XD->system_dynamics_S1 - 20.1
*X->system_dynamics_S1;
XD->system_dynamics_S1 = XD->system_dynamics_S1 - 2.0
*X->system_dynamics_S2;
XD->system_dynamics_S2 = XD->system_dynamics_S2 +

X->system_dynamics_S1;
XD->system_dynamics_S1 = XD->system_dynamics_S1 +

2.0*BUILT_MODEL_2_1;
/*---------------------------- Nth Order Integrator */
/* {BUILT_MODEL..2} */
XD->BUILT_MODEL_2_S1 = X->BUILT_MODEL_2_S2;
XD->BUILT_MODEL_2_S2 = Actuator_Nonlinearity_1;

...
}

INIT = 0;
iinfo[1] = 0;
return;

ERROR: ERROR_FLAG[1] = iinfo[0];
iinfo[0]=0;

}

120

6

6
Code Generation for Continuous Systems
/* The function rungekutta2 employs the second-order Runge-Kutta method with
Kutta's coefficients to integrate a system of n simultaneous first order
ordinary differential equations dxdt[j] = dx[j]/dt, (j=1,2,...,n), across one
step of length h in the independent variable t, subject to initial conditions
x[j], (j=1,2,...,n). Each dxdt[j], the derivative of x[j], must be computed
two times per integration step by calling the state derivatives and output
equations function (sybsys_1()). savex(j) is used to save the initial value
of x(j) and phi(j) is the increment function for the j(th) equation. As
written, n may be no larger than 5. (Modified Euler)
*/
void rungekutta2(n,x,dxdt,t,h)

RT_INTEGER n;
RT_FLOAT *x,*dxdt,t,h;

{
RT_FLOAT phi[5];
RT_FLOAT savex[5];
RT_INTEGER j, retval;
RT_FLOAT hh = t;

ss1_rinfo[0] = hh; ss1_rinfo[1] = 0.0;
ss1_iinfo[2]=1; ss1_iinfo[3]=1; ss1_iinfo[4]=8;
subsys_1(&subsys_1_out, subsys_1_states, &subsys_1_info);

for (j=0; j<n; j++) {
savex[j] = x[j];
phi[j] = dxdt[j];
x[j] = savex[j] + h*dxdt[j];

}
hh=t+h;

ss1_rinfo[0] = hh; ss1_rinfo[1] = 0.0;
ss1_iinfo[2]=1; ss1_iinfo[3]=1; ss1_iinfo[4]=0;
subsys_1(&subsys_1_out, subsys_1_states, &subsys_1_info);

for (j=0; j<n; j++) x[j] = savex[j] + (phi[j] + dxdt[j])*h/2.0;
}

/*---------------*
-- SCHEDULER --
---------------/

...
void Init_Scheduler()
{

...
}
void SCHEDULER()
{

register RT_INTEGER NTSK;
register RT_INTEGER J;
RT_INTEGER ITSK;
RT_INTEGER I;

TIME_COUNT = TIME_COUNT + 1;
121

MATRIXX 7.0
AutoCode User’s Guide
/*** System Input ***/
...
/*** Task Scheduling ***/

for(NTSK=NTASKS; NTSK>=1; NTSK--){

switch(TASK_STATE[NTSK]){
case IDLE :

switch(TCB[NTSK].TASK_TYPE){
case CONTINUOUS :
case PERIODIC :

if(TCB[NTSK].START == 0){
Queue_Task(NTSK);

Update_Outputs(NTSK);
TCB[NTSK].START =

TCB[NTSK].SCHEDULING_COUNT;
}else{

TCB[NTSK].START =
TCB[NTSK].START - 1;

}
break;

case ENABLED_PERIODIC :
...

}
break;

case RUNNING :
...
}

}

/*** System Output ***/
...
/*** Update elapsed time ***/

ELAPSED_TIME = ((RT_DURATION)TIME_COUNT)*SCHEDULER_INTERVAL;

/*** Task Input Sample and Hold ***/
...

/*** Signal End of Critical Section ***/
...

/*** Task Dispatching ***/

while(ITSK < CURRENT_PRIORITY && ITSK <= DISPATCH_COUNT){
Disable;
if(DISPATCH[ITSK]){

LEVEL++;
PRIORITY[LEVEL] = CURRENT_PRIORITY;
CURRENT_PRIORITY = ITSK;
DISPATCH[ITSK] = FALSE;
Enable;
switch (ITSK){
122

6

6
Code Generation for Continuous Systems
case 1:
subsys_1 (&subsys_1_out,

&subsys_1_states,
&subsys_1_info);

rungekutta2(5,
(RT_FLOAT *)(&subsys_1_states[0]),
(RT_FLOAT *)(&subsys_1_states[1]),
(RT_FLOAT)SUBSYS_TIME[1],
0.003);

break;

default : break;
}
...

}
..

}

6.6 Sample Generated Ada Code

The following example is a file that lists the generated model and default
integrator (Runge-Kutta 2) code for the block diagram model located in the file
mws_demo.dat in the classical_demo directory located in the SystemBuild demo
distribution directory. The block diagram is shown in Figure 6-2, p.118.

AutoCode automatically generates built_model.a in the directory from which
Xmath was invoked. The sample generated code (Example 6-4) has been edited
for brevity, showing only the most important features.

As code can change slightly from one release to the next, be sure to refer to the
current example in your demo directory for an exact code listing.

Example 6-4 File built_model.a

-- AutoCode/Ada (TM) Code Generator V7.x
-- WIND RIVER SYSTEMS INC., SUNNYVALE, CALIFORNIA

Modelname : built_model
-- Filename : built_model.ada
-- Dac filename : ada_rt.dac

NOTE: If you need to review the steps required to create an executable, refer to
2.5.1 Standalone Simulation, p.26.
123

MATRIXX 7.0
AutoCode User’s Guide
-- Generated on : Wed Dec 1 20:59:39 1999
-- Dac file created on : Wed Dec 1 18:01:31 1999
---...
package SUBSYSTEMS is

-------- (Continuous) Subsystem 1 Package --------
package subsys_1_pkg is

...

procedure subsys_1;

procedure rungekutta2(n :in RT_INTEGER;
x :in out RT_FLOAT_AY_5_P;
dxdt :RT_FLOAT_AY_5_P;
t :in RT_FLOAT;
h :in RT_FLOAT);

end subsys_1_pkg;

end SUBSYSTEMS;

...
package body Subsys_1_pkg is

SUBSYS_ID : constant := 1;

-------- Task's code. --------
...
procedure subsys_1 is

...
------ Local Block Outputs. ------
...
------ Algorithmic Local Variables. ------
...

begin
if iinfo(1) > 0 then

INIT := TRUE; iinfo(1) := 0;
end if;
if iinfo(2) > 0 then

STATES := TRUE; iinfo(2) := 0;
end if;
if iinfo(3) > 0 then

OUTPUTS := TRUE; iinfo(3) := 0;
end if;

------ Output Update. ------

if OUTPUTS then
-- ---------------------------- Num - Den Coeffs. --
-- {BUILT_MODEL.system dynamics.4} --
Y.system_output := 0.5*X.system_dynamics_S1 + 1.5*

X.system_dynamics_S2;

-- ---------------------------- Nth Order Integrator --
-- {BUILT_MODEL..2} --
BUILT_MODEL_2_1 := 1.4*X.BUILT_MODEL_2_S1;
-- ---------------------------- Step Function --
124

6

6
Code Generation for Continuous Systems
-- {BUILT_MODEL..8} --
BUILT_MODEL_2_1=1;

-- ---------------------------- Quantization --
-- {BUILT_MODEL..10} --
BUILT_MODEL_10_1 := 0.7*ROUND(Y.system_output/0.7);
sgn := SGN(Y.system_output);
ushift := ABS(Y.system_output) + 0.35;
remain := ((ushift)MOD(0.7));
alpha_1 := remain - (1.0 - RELTOL)*0.7;
if alpha_1 > 0.0 then

BUILT_MODEL_10_1 := BUILT_MODEL_10_1 + sgn*alpha_1/RELTOL;
end if;
...

end if;

------ State Update. ------
if STATES then

-- ---------------------------- Num - Den Coeffs. --
-- {BUILT_MODEL.system dynamics.4} --
XD.system_dynamics_S1 := 0.0;
XD.system_dynamics_S2 := 0.0;
XD.system_dynamics_S1 := XD.system_dynamics_S1 - 20.1*

X.system_dynamics_S1;
XD.system_dynamics_S1 := XD.system_dynamics_S1 - 2.0*

X.system_dynamics_S2;
XD.system_dynamics_S2 := XD.system_dynamics_S2 +

X.system_dynamics_S1;
XD.system_dynamics_S1 := XD.system_dynamics_S1 + 2.0*

BUILT_MODEL_2_1;
-- ---------------------------- Nth Order Integrator --
-- {BUILT_MODEL..2} --
XD.BUILT_MODEL_2_S1 := X.BUILT_MODEL_2_S2;
XD.BUILT_MODEL_2_S2 := Actuator_Nonlinearity_1;
...

end if;

INIT := FALSE;
exception

when EXEC_ERROR =>
ERROR_FLAG(1) := iinfo(0); iinfo(0) := 0;

when NUMERIC_ERROR | CONSTRAINT_ERROR =>
ERROR_FLAG(1) := MATH_ERROR;

when OTHERS =>
ERROR_FLAG(1) := UNKNOWN_ERROR;

end subsys_1;

-- The function rungekutta2 employs the second-order Runge-Kutta method
-- with Kutta's coefficients to integrate a system of n simultaneous
-- first order ordinary differential equations dxdt(j) = dx(j)/dt,
-- (j=1,2,...,n), across one step of length h in the independent
-- variable t, subject to initial conditions x(j), (j:=1,2,...,n). Each
-- dxdt(j), the derivative of x(j), must be computed two times per
-- integration step by calling the state derivatives and output
-- equations function (subsys_1()). savex(j) is used to save the
-- initial value of x(j) and phi(j) is the increment function for the
125

MATRIXX 7.0
AutoCode User’s Guide
-- j(th) equation. As written, n may be no larger than 5.
-- (Modified Euler)
procedure rungekutta2(n :in RT_INTEGER;

x :in out RT_FLOAT_AY_5_P;
dxdt :in RT_FLOAT_AY_5_P;
t :in RT_FLOAT;
h :in RT_FLOAT) is

phi : RT_FLOAT_AY(0..5);
savex : RT_FLOAT_AY(0..5);
j : RT_INTEGER;
retval : RT_INTEGER;
hh : RT_FLOAT := t;

begin

I.rinfo(0) := hh; -- TIME
I.rinfo(1) := h; -- SAMPLE INTERVAL
I.rinfo(2) := 0.0; -- SKEW
I.rinfo(3) := 0.0; -- START TIME
I.iinfo(2):=1; I.iinfo(3):=1; I.iinfo(4):=1;
subsys_1;

for j in 0..n loop
savex(j) := x(j);
phi(j) := dxdt(j);
x(j) := savex(j) + h*dxdt(j);

end loop;
hh:=t+h;

I.rinfo(0) := hh; -- TIME
I.rinfo(1) := h; -- SAMPLE INTERVAL
I.rinfo(2) := 0.0; -- SKEW
I.rinfo(3) := 0.0; -- START TIME
I.iinfo(2):=1; I.iinfo(3):=1; I.iinfo(4):=1;
subsys_1;

for j in 0..n -l loop
x(j) := savex(j) + (phi(j) + dxdt(j))*h/2.0;

end loop;
end rungekutta2;
...

end Subsys_1_pkg;
126

6

6
Code Generation for Continuous Systems
6.7 Hints

When dealing with a system containing a single continuous subsystem,
AutoCode generates a SCHEDULER_FREQ of 1.0 (that is, the inherent rate of the
continuous subsystem is that of the scheduler, 1.0). Additionally, when dealing
with a hybrid system, AutoCode, by default, treats the continuous subsystem as
the fastest task to be dispatched (again, the inherent rate of the continuous
subsystem is that of the scheduler). This value might not reflect the true dynamics
of the system. In order to obtain an approximate rate for the continuous task, you
need to use sim iteratively (or lin for predominantly linear systems) to arrive at an
optimal step size for the integration algorithm, and thus, an approximate
sampling interval for the continuous task. For a continuous system (represented
by differential equations), the step size is related to its eigenvalues (the
eigenvalues vary in time for nonlinear systems). Therefore, AutoCode cannot
calculate the average step size.

Typically, a continuous system needs to be sampled 5 to 15 times faster than the
smallest time constant in the system (depending on the order of the integration
algorithm). This time constant is the reciprocal of the largest eigenvalue in the
system and this information can be obtained with lin.
127

MATRIXX 7.0
AutoCode User’s Guide
128

7

Using VxWorks with AutoCode
This chapter describes the VxWorks AutoCode C template package with
MATRIXX

® release 7.X and Tornado 2. This includes a description of generating
the real-time application source code such as super_cruise.c using the VxWorks
template. It also provides a way to run and test this application code using a
sample application driver program. For both of the examples in this chapter, you
need to have Tornado 2 installed on your host and a target running VxWorks 5.4.
Currently, we support the following target CPU types:

■ SIMNT - VxWorks simulator (see Increasing SIMNT Memory Size)

■ PPC604 - single processor (see For PPC604 targets)

■ I80486 - single processor (see For I80486 targets)

7.1 Template Features

The VxWorks template provides the following features:

■ Scheduler and task overflow limit have been implemented. If the scheduler or
any task is unable to complete its execution within the set number of clock
cycles, then it is allowed to take a few more clock cycles to finish. You can
change this value in the usrData.h file. If this limit is exceeded, then the
application reports an error and terminates.

NOTE: Other x86 CPU types and their corresponding BSPs could easily be used.
129

MATRIXX 7.0
AutoCode User’s Guide
■ The stop and restart capability is fully functional.

■ Supports BetterState related code generation.

■ The gencode.bat file can generate application code for any model. For
example, typing gencode lander at the appropriate command prompt,
generates code for the model lander. Typing gencode only, generates the
default Supercruise code.

■ Similarly, makefile.cmdline can build the downloadable for any model. For
example, typing make -f makefile.cmdline PROJ=lander starts the build for
the lander model on the default I80486 CPU type.

■ The real-time application shuts down whenever an AutoCode related error is
encountered.

■ The super_cruise.c file is no longer instrumented with printf statements.

■ The AutoCode generated code uses semaphores instead of message queues as
the IPC mechanism. This improves the run-time performance of the real-time
application.

■ The application can take inputs from an Xmath format file and run until all
inputs are processed. Upon shut-down, an output file is generated containing
the computed results of the input data.

7.2 Generating Code

In order to use the VxWorks template, you need the following files:

vxworks.tpl VxWorks template source file

vxworks.dac Compiled template file - needed if vxworks.tpl can’t be
compiled

gencode.bat Batch file for generating the application code

appl .rtf A real-time file of a SystemBuild model, for example,
super_cruise.rtf.

appl .data An Xmath formatted input data file, for example,
super_cruise.data
130

7

7
Using VxWorks with AutoCode
 To generate the code for the given model file, do the following:

1. Open a Command Prompt window.

2. Copy all provided files to your working directory.

3. Change the variables ISIHOME and MATRIXXVER in the gencode.bat file to
point to your MATRIXX installation directory and release, respectively.

4. Run the batch file gencode.bat from the command prompt.

This generates the following files in your working directory:

7.3 Code Testing Method

In order to test this code, make sure that you have copied the following files to
your working directory:

super_cruise.c The real-time application source code

vxworks.dac Compiled template file - needed if vxworks.tpl
cannot be compiled

gencode.bat Batch file for generating the application code

appl.rtf A real-time file of a SystemBuild model, for example,
super_cruise.rtf

appl.data An Xmath formatted input data file, for example,
super_cruise.data

makefile.cmdline Sample makefile to build a downloadable object.

usrAppInit.c Sample driver program.

auxClk.c File containing aux clock related functions file.

sa_utils.c Utility functions that super_cruise.c calls.

super_cruise.c Application file generated by you.

sa_defn.h,
sa_utils.h

Include files used by the application.

appl.h Include file for the application source code.
131

MATRIXX 7.0
AutoCode User’s Guide
The inputs to the application can now be read from an input file. The computed
results will be saved in an output file. This I/O capability is available if the
symbol FILE_IO is defined. Without this, the code will work like before where
you must initialize the hard-coded inputs in the sa_utils.c file with appropriate
values according to your model needs. If you are running the super_cruise model,
then please take a look at the SA_External_Input() function in the sa_utils.c file
and follow the instructions given there.

This application is by default built for an 80486 target PC. If your target differs
from this, please follow the instructions in the VxWorks Programmer's Guide
(Chapter: Configuration and Build; Section: Defining the CPU Type) for making
changes to the given makefile. Also, follow the Tornado User's Guide (Chapter:
Projects; Section: Building a Downloadable Application) if you want to use the
IDE for building the downloadable image. The makefile supplied is for use at the
Command Prompt, and not in a Tornado IDE project.

If you are using the aux clock, then you need to custom-build your VxWorks
image and boot your target with this. Details for building a custom image can be
found in the Tornado User’s Guide (Chapter: Projects; Section: Creating a Custom
VxWorks Image). Changes needed are as follows:

For PPC604 targets

1. Increase AUX_CLK_RATE_MAX from 5000 to 50000.

2. Compile with the -O2 or -O3 optimization level.

For I80486 targets

Compile with the -O2 or -O3 optimization level.

If you are building VxWorks manually, then edit mv2600.h in your ppc604 BSP
directory to change the value of AUX_CLK_RATE_MAX. Then add the following
line in the makefile found in the same location (or in the pc486 BSP directory):

ADDED_CFLAGS = -O2

Do a make clean followed by make to rebuild VxWorks.

usrData.h Include file with settings you can change.

super_cruise.data Input data file.
132

7

7
Using VxWorks with AutoCode
Follow these steps for building and loading the test case, assuming you have
installed Tornado in c:\Tornado and are in your working directory. We also
assume that you have your target hooked up to your host through one of the
methods mentioned in the Tornado User’s Guide.

From a Command Prompt:

1. Enter the following to activate all Tornado-related environment variables:

c:\Tornado\host\x86-win32\bin\torvars.exe

2. Edit makefile.cmdline to change:

CPU to your default target type and EXTRA_INCLUDE and VPATH to point
to the correct drive for the Wind River distribution of AutoCode.

Also, note the usage of EXTRA_DEFINE which sets the RS_VXWORKS
symbol. You must set this symbol, the extra include path, and the macro
VPATH if you are using the Tornado project facility for make.

Add -DVX_FP to the list of EXTRA_DEFINE if your target supports a
floating-point coprocessor. For example:

EXTRA_DEFINE=-DRS_VXWORKS -DVX_FP

The floating-point define is not needed when using the VxWorks simulator.

Remove -DUSE_AUX_CLK if you want your application to free-run. By
default the makefile has this symbol defined which implies that your
application will be driven by aux clock interrupts. Attempting to use the aux
clock with a SIMNT target will result in a run-time error.

Add -DFILE_IO if you want the application to read its input from the
super_cruise.data file. By default, this symbol is not defined.

3. If you are using the aux clock, then edit the usrData.h file to make changes to
the clock frequency (CLK_FREQ). See Usage Notes for the appropriate
values. You can also change the value of OVERFLOW_LIMIT to a different
number.

4. Initialize the input values in the SA_External_Input() function in the sa_utils.c
file if not using FILE_IO. Otherwise, edit the usrData.h file and change the
value of DATA_FILE_LOCATION to point to the directory where you have
stored super_cruise.data.

5. Save all files that have been edited.
133

MATRIXX 7.0
AutoCode User’s Guide
6. Issue the command:

make -f makefile.cmdline CPU= CPU_TYPE

For example:

make -f makefile.cmdline CPU=PPC604

This compiles all source files and produces a linked object called super_cruise.
You can ignore the warnings given by the compiler.

Examples of CPU_TYPE are explained in the makefile. If none is given, the
default I80486 is used.

7. Start a WindShell in the Tornado IDE. Make sure that you are in the current
working directory in this shell and that an appropriate target server is
running. For example:

cd "d:\users\myname\vxworks\projects\super_cruise"

8. Issue the following command to download the linked object super_cruise to
your target:

ld 1,0, "super_cruise"

9. Spawn a task to execute the real-time application:

sp usrAppInit

10. If you have defined FILE_IO, then you will be prompted to enter the input
and output file names. Enter super_cruise.data as the input file and a similar
name for the output file name at the target console or the hyperterminal.

7.4 Increasing SIMNT Memory Size

If the VxWorks built-in simulator runs out of memory, follow this procedure to
increase the available memory:

1. Open a Command Prompt window and change to the following directory:

C:\Tornado\host\x86-win32\bin

NOTE: You might want to experiment with the code in usrAppInit.c.
134

7

7
Using VxWorks with AutoCode
2. Run torvars from the command prompt to set up the environment.

3. Start the VxWorks simulator with increased memory (for example,
approximately 3 MB):

C:\Tornado\target\config\simpc\vxWorks.exe -r3000000

4. Configure and launch a target server from the Tornado 2 toolbar
-or-
Configure and launch a target server from the Command Prompt window by
changing directory to:

C:\Tornado\target\host\x86-win32\bin

and then entering this command:

set WIND_UID=0

followed by:

tgtsvr.exe -V -B wdbpipe -R C:/TEMP/tsfs -RW -n vxsim -c C:/Tornado/
target/config/simpc/vxWorks yourNode

 where yourNode is the name of your machine.

5. Launch a WindShell and communicate with the target as usual. You can
launch the WindShell from the Tornado 2 toolbar or from the Command
Prompt:

windsh.exe vxsim@ yourNode

NOTE: There is no space between -r and the memory size.

! WARNING: When a simulator target is booted, a number of tasks have a nonzero
Errno. These errors occur before super_cruise is loaded, but cause no harm.
135

MATRIXX 7.0
AutoCode User’s Guide
7.5 Usage Notes

When you are using the VxWorks AutoCode C template package with
MATRIXX 7.X and Tornado 2, the following usage notes may be of interest:

■ The code in usrAppInit.c is for demonstration and test purposes only.

■ Recommended values to use for the aux clock frequency are:

■ The total expected printed output of the super_cruise application driven by
the aux clock and without any interference from run-time print messages is:

SA_Background: Starting aux clock INT...
Enter Xmath {matrixx, ASCII} formatted input file name:

Enter output file name:

If, at any time the scheduler or a subsystem task exceeds the number of clock
cycles set by OVERFLOW_LIMIT in usrData.h, while trying to complete its
execution, the system reports this situation and terminates by deleting all the
tasks and cleaning up after them.

■ The aux clock used by the PC486 BSP is the CMOS RTC. It is limited to using
one of only 13 clock speeds which are powers of two and in the range
[2,8192]. By contrast, the PPC604 aux clock value is limited to the range of
[40,50000], but not constrained to be a power of two. Setting the aux clock
speed to any frequency outside of these ranges and constraints results in the
failure of the sysAuxClkRateSet() call and the application will not be able to
run.

All tasks will just be in a pending state. At this point, you will need to issue a
progStop command to get out of such a situation.

■ You can use WindView to observe the application graphically and confirm its
correctness as far as scheduling goes. However, it is not advisable to interfere
with the target in any way (for example, typing a command at a WindShell,
using WindView, using the browser’s spy chart) when the application is
running at a significantly high clock speed. The program can only tolerate
such activities (without causing any scheduler or task overruns) at low clock
speeds. For information about WindView, see the WindView User’s Guide.

For I80486 targets Values between 2 and 1024 Hz.

For PPC604 targets Values between 40 and 10000 Hz.

For SIMNT Not applicable.
136

7

7
Using VxWorks with AutoCode
■ The browser’s spy chart and WindView (with time stamping) both use the
aux clock - hence they will interfere with the application if either of them is
used while the application is running. However, we have not observed any
significant interference.

■ The application free-runs when the aux clock is not used. This means that its
period is equal to the speed of the slowest task in the system. The SIMNT
target supports only the free-run mode of operation. If you attempt to use the
aux clock with the SIMNT target, you will get an error message.

■ The include file sa_defn.h has been merged into the standard AutoCode 7.X
distribution.

■ MATRIXX
® 7.X support files for Tornado 2 are included in the AutoCode 7.X

distribution in the %MATRIXX%\case\acc\templates\apps\vxworks
directory. This includes the following files:

appl.h
auxclk.c
gencode.bat
makefile.cmdline
readme.txt
sa_defn.h
sa_utils.c
sa_utils.h
super_cruise.c
super_cruise.data
super_cruise.rtf
usrappinit.c
usrdata.h
vxworks.dac
vxworks.tpl

! WARNING: When using FILE_IO, it is essential that you spawn usrAppInit rather
than just invoke usrAppInit. By spawning it, all I/O gets redirected to the target’s
console or the hyperterminal. Hence, anything that you enter from the keyboard
gets echoed back on to the screen. If you don’t spawn, then I/O is done at the
WindShell, where the things that you type are not echoed.

NOTE: The above files, including possible updates, may be available on the Wind
River FTP site in the form of a .zip file.
137

MATRIXX 7.0
AutoCode User’s Guide
138

8

Customizing AutoCode and

Generated Code
This chapter provides advanced methods for customizing AutoCode and its
output real-time code using AutoCode configuration options, templates,
BlockScript, and %variables.

8.1 Introduction

You can customize the AutoCode process and the generated output code to suit
your specific needs. The different ways you can do this are listed below and
described in detail in the sections that follow:

■ AutoCode configuration options allow you to specify indentation, coding of
significant digits for numeric literals, minimum scheduler frequency, and
output file name as described in AutoCode Configuration Options, p.140.

■ Templates allow you to modify the overall architecture of generated code,
customize the scheduler, modify data structures and external I/O calls, add
user codes described in Templates, p.140.

■ BlockScript enables you to create your custom block algorithm and generate it
in-line in the output source files described in BlockScript Block, p.140.

■ Data parameterization (%variable) allows the numeric literals in the block
algorithms to be represented by named variables (%variables) as described in
Data Parameterization, p.142.
139

MATRIXX 7.0
AutoCode User’s Guide
■ Using existing code libraries and interfaces to hardware are accomplished by
using a UserCode Block as described on p.143 or Macro Procedure as
described on p.143.

8.2 AutoCode Configuration Options

You can specify the AutoCode configuration from a SystemBuild form (see
Chapter 2), by using Xmath Commands window options or by using operating
system command options. For information on Xmath Commands window or
operating system command options, see Appendix A, AutoCode Options.

8.3 Templates

Templates serve as the front end to AutoCode. They determine completely what
the output code should be for a given model (.rtf file) and command options. You
use the template programming language (TPL) to specify the templates, which are
merely TPL programs. We provide templates for both C and Ada code generation
that, when compiled, will produce what is called a standalone simulation
executable.

Templates and the TPL are described in the Template Programming Language User’s
Guide.

8.4 BlockScript Block

The block algorithms for supplied blocks cannot be modified or customized
through AutoCode templates. However, you can create your own block by
specifying the algorithm in a BlockScript block. A BlockScript block uses a
140

8

8
Customizing AutoCode and Generated Code
scripting language called BlockScript that is translated into C or Ada code and it
is generated along with the other blocks in the system. BlockScript provides a
generalized programming capability for defining SystemBuild blocks for
simulation and code generation, and can also be accessed from BetterState.
BlockScript allows you to write the update equations that process the inputs and
parameters to produce the outputs. BlockScript I/O can be read by the Data
Dictionary. BlockScript is documented in the AutoCode Reference and the
BlockScript User’s Guide.

Example 8-1 shows a user-defined BlockScript algorithm calculating the average
of 5 numbers (using a BlockScript WHILE loop).

Example 8-1 Example of BlockScript Using WHILE Loop

Outputs: y;
parameters: p;
Float y, p(5);
Float sum;

sum=0.0;
k=1;
While k<p.size Do

sum=sum+p(k);
k=k+1;

EndWhile;
y=sum/p.size;

Resulting generated C Code segment:

/*---------- BlockScript */
/* {gplvar.Thru_Var.3} */

sum = 0.0;
k = 1;
while (k < 5) {

sum = sum + myvar[-1+k];
k = k + 1;

}
Y->Thru_Var_1 = sum/5;

Resulting generated Ada Code segment:

---------- BlockScript --
-- {gplvar.Thru_Var1.3} --

sum := 0.0;
k := 1;
while k < 5 loop

sum := sum + myvar(-1+k);
k := k + 1;

end loop;
Y.Thru_Var_1 := sum/RT_FLOAT(5);
141

MATRIXX 7.0
AutoCode User’s Guide
The parameters: p; statement causes the Parameters View in the BlockScript form
to include a new 5-by-1 Parameter p. A %variable %myvar has been defined for
this parameter. This causes AutoCode to replace all occurrences of p in the
previous and following scripts to be replaced by myvar.

For more information about programming with BlockScript, see the AutoCode
Reference and the BlockScript User’s Guide.

8.5 Data Parameterization

AutoCode users have a choice of generating block data with constant values
entered in the Block form or to use Xmath variables (%variables) to represent the
data symbolically. While generating code from the SystemBuild menu, this choice
is made via the Block Parameters option, which can have values of % Xmath vars
or Block Defaults. Example 8-2 shows generated code for a gain block using block
default data, and Example 8-3 shows generated code for a gain block using an
Xmath variable called gainvar, which is initialized to 5.6 in the Xmath partition.

Example 8-2 Generated Code for a Gain Block Using Block Default Data

y = 2.3 * u;

Example 8-3 Generated Code for a Gain Block Using Xmath Initialized Variable

0 generated code:
VAR_FLOAT gainvar = 5.6;
. . .
y = gainvar * U->gainvar_1;

! CAUTION: Changing %variables can in certain cases, such as feedback loops,
cause the blocks to be executed out of order. The result of the application might not
match the SystemBuild simulation.
142

8

8
Customizing AutoCode and Generated Code
8.6 UserCode Block

A UserCode Block (UCB) provides a strict interface between an AutoCode-
generated system and some other code. The idea is that you can implement a
particular functionality more efficiently by supplying code rather than attempting
to model it within SystemBuild. Such functionality includes operations dealing
with hardware or reusing existing code found in libraries.

A UCB can also be used to increase the performance of the SystemBuild Simulator
by linking back code within a UCB directly to the simulator. The code can be
either handwritten or discrete procedural code generated by AutoCode.

For more information about the UCB interface and linking back into the
Simulator, see the AutoCode Reference.

8.7 Macro Procedure Block

A Macro Procedure block provides a C-macro like capability in the generated
code. The macro’s functionality is to be modeled within SystemBuild so that the
simulation matches, but within the generated code, only a macro name will be
generated. For example, you can model a function that returns the maximum of 2
numbers, but it is much more efficient to use the MAX macro provided in C.
Therefore, the implementation of a macro procedure must be supplied by you in
the generated code for the code to compile. Macro procedures provide an inline
capability for small code fragments. See the AutoCode Reference for more details
about the code generated for a Macro Procedure block.

NOTE: AutoCode supports macro procedure blocks for Ada as well as C.
However, there is no standard C-macro like capability in Ada. Therefore, we
recommend that you implement the Macro Procedure as a standard procedure and
use the INLINE pragma.
143

MATRIXX 7.0
AutoCode User’s Guide
8.8 ZeroCrossing Blocks and Resettable Integrators

AutoCode can generate code for ZeroCrossing blocks and the resettable
integrator. These representations are an approximation of the simulator
implementation given the real-time nature of the generated code. You must use
actiming and the fixed-point algorithm during simulation to ensure that your
generated code will approximate the simulation results obtained with the fixed-
step integration algorithms supported by AutoCode. Your AutoCode results,
however, will not exactly match the simulation results when your model uses
ZeroCrossing blocks.

For a complete discussion of ZeroCrossing blocks and resettable integrators, see
the SystemBuild User’s Guide.

8.9 User-Defined Code Comments

AutoCode provides the following tokens for adding comments within generated
code:

■ blk_code_cmt for blocks

■ sb_code_cmt for SuperBlocks

■ ds_code_cmt for DataStores

These code-comment tokens are predefined user parameters, which are especially
useful if you plan to generate documentation as described in the DocumentIt
User’s Guide. For additional information on user parameters, see the SystemBuild
User’s Guide.

NOTE: Event detection is not supported.
144

8

8
Customizing AutoCode and Generated Code
8.9.1 Using a User-Defined Code Comment

To use a code-comment token, take the steps described in the following phases.

Phase One

Before code generation:

1. Create an appropriate user-parameter.

2. Within a block, create a user-parameter with the name blk_code_cmt_s.

3. Repeat this process for each of the blocks, SuperBlocks, and DataStores where
you want comments to appear in the generated code.

Phase Two

The second phase occurs during code generation. To insert the comments you
created within the user-parameters into the generated code, do one of the
following:

■ Generate code by selecting the Enable DocumentIt Block Comments option from
the Formatting tab of the Advanced Dialog of the AutoCode code generation
dialog.

■ Use the docit AutoCode keyword.

■ Use the -doc Xmath command option.

After code is generated, the comments placed within a block’s blk_code_cmt_s
user-parameter appear where the block appears in the generated code. For
SuperBlocks, only Procedure SuperBlocks have the comments placed within the
generated code. Those comments from the sb_code_cmt_s user-parameter are
placed at the definition of the function that represents the Procedure SuperBlock.
For DataStores, the comments within the ds_code_cmt_s are placed at the
definition of the DataStore.

Wind River recommends that the content of the user-parameters be plain-text,
rather than Rich Text Format or other formatted text content, because the contents
are placed within code.

NOTE: Within a SuperBlock, create the user-parameter with the name
sb_code_cmt_s and for a DataStore, create a user-parameter with the name
ds_code_cmt_s.
145

MATRIXX 7.0
AutoCode User’s Guide
8.9.2 Limitations

The code-comment tokens have the following limitations:

■ Any “basic block” can use the blk_code_cmt_s user-parameter, including the
SuperBlock Block (that is, a SuperBlock reference).

■ Any DataStore can use the ds_code_cmt_s user-parameter.

■ Any SuperBlock definition can use the sb_code_cmt_s, but only for Procedure
SuperBlocks (all variations) will the comments appear in the code.
146

9

Introduction to Software

Constructs with AutoCode
This chapter is an introduction to the blocks that implement typical software
constructs just as loops and decision statements. This includes UserCode Blocks,
Macro Procedure Blocks, and Procedure SuperBlocks.

9.1 Introduction

We call blocks that implement typical software logic (such as loops and decision
statements) software constructs to differentiate from other blocks that compute a
result (that is, functional blocks). In other words, software construct blocks deal
with the control flow of the program rather than the data flow of the model,
allowing the automatically generated code to more closely mimic handwritten
code.

NOTE: Unless otherwise noted, these blocks are not supported in Continuous
SuperBlocks.
147

MATRIXX 7.0
AutoCode User’s Guide
9.2 Standard Procedure SuperBlocks

Standard Procedure SuperBlocks are included in the discussion of software
constructs because a procedure represents good software engineering by creating
a modular piece of code that can be reused throughout the model. When
procedures are reused, code size can be greatly reduced. Maintenance of your
design is made easier as fixes are made only in one place. Testing is more tractable
as a procedure defines an encapsulated unit that can be independently tested,
validated, and verified. Wind River recommends that you use Standard
Procedures within your model.

9.3 Variable Blocks

Variable Blocks represent actual variables within the generated code. SystemBuild
has two types of Variable Blocks, one that represents a global variable and the
other that represents a local variable.

9.3.1 Global

A Global Variable Block is used for a variety of purposes. Traditionally, it has been
used to communicate information between Asynchronous Procedure SuperBlocks
and subsystems. Also, data shared across multiple processors can be easily
accessed. Another usage of Global Variable Blocks is to provide persistent data
during execution of the system. Standard Procedures can use Global Variable
Blocks as well.

Global Variable Blocks represent global variables in the code. Therefore, Global
Variable Blocks are implemented to preserve determinancy. This is only an issue
for multi-rate and multi-processor systems. However, even for single-rate
systems, overhead and special semantics are associated with a Global Variable
Block when data is read and written.

Generally speaking, all reads from a Global Variable Block occur at the beginning
of the subsystem for that time point or activation frame, while all writes to the
Global Variable Block occur at the end of the subsystem or activation frame. See
the AutoCode Reference for more details.
148

9

9
Introduction to Software Constructs with AutoCode
9.3.2 Local

A Local Variable Block is similar to a Global Variable Block, except Local Variable
Blocks represent local variables in the generated code. Therefore, a Local Variable
Block cannot hold persistent data, and cannot be used to communicate information
across processors, subsystems, and procedures. Local Variable Blocks provide
efficient communication within a subsystem, and are used with the Iterator and
IfThenElse Blocks.

9.4 Graphical Software Constructs

Software constructs are graphical representations of typical software functions.
These functions include:

■ IfThenElse blocks

■ Looping

■ Ordering or sequencing the flow of data and calculations

■ Using local or global variables

These are basic functions used in pseudo-code for software design. Instead of
using pseudo-code, a designer can use the function blocks to design the
procedure, and then automatically generate code.

Vectors

You can use vectors to reduce code size when vector type data is being passed or
operated on. Example x and example y illustrate the code size reduction for two 5-
element vectors, through the use of arrays in the code. You can tailor generated
code through options in the Optimization tab of the Advanced AutoCode dialog (as
shown in Optimizations).
149

MATRIXX 7.0
AutoCode User’s Guide
9.5 IfThenElse Block

The IfThenElse block implements a decision within the generated code, and then
executes one sequence of blocks. This block is like an if statement in C or Ada. The
IfThenElse block has output ports (pins) and a prolog section. The output ports
are available from the face of the first condition block in the IfThenElse block
chain. You can connect to these ports as if they were the output ports of any other
standard block. Output from each of the block sections is connectable to the
output ports the same way as the output of the content of a SuperBlock is
connected to its external output.

9.5.1 IfThenElse Block Example

In our IfThenElse block example, we have the following problem requirements:

■ 2 procedures named P1 and P2, which are implemented in a particular order,
based on the values of inputs abcd and efg.

■ The procedures to be executed for specific values of the input criteria as
defined as follows:

Given the above problem description, the generated C code makes use of the
IfThenElse clause to implement the requirement.

SystemBuild is used the graphical coding tool to implement the requirements of
the Process Activation Table (PAT), using predefined software constructs. The
top-level block (shown below) is a discrete SuperBlock, and the software
construct blocks are used to structure the code. This example is a grouping of
IfThenElse blocks where the required procedures, P1 and P2, are executed based
on the input criteria of abcd and efg. The P1 and P2 procedures are standard
procedure SuperBlocks. They represent code that is used multiple times, and is
easily re-used.

Input Criteria Procedures Executed

abcd > 10 P1

abcd < 1 P2

abcd > 5 or efg =
1

P1, P2

efg > 6 P2, P1
150

9

9
Introduction to Software Constructs with AutoCode
When multiple procedures (or any blocks) must be executed in a specific order the
Sequencer can be used to indicate the order. In the above top SuperBlock, notice
that the sequencers are the sets of vertical parallel lines. All blocks to the left of a
sequencer are executed first, followed by all blocks to the right. The last two “else
if” paths in the example actually specify the order of execution of procedures P1
and P2, as indicated by the sequencers.

The outputs of the procedures are then written to variables, which can be accessed
from the rest of the system. When using the IfThenElse construct, only the
segment whose conditions are met is actually executed. All other segments are
not updated, which reduces simulation time. Also, if once the IfThenElse
construct is complete, the output myvar of the executed procedure is then read.

For the generated code from this model, see Appendix C, Sample AutoCode
Output.
151

MATRIXX 7.0
AutoCode User’s Guide
9.5.2 Looping

Looping is another important software method that is easily accomplished
graphically within SystemBuild with the While, Break, and Continue icons. The
model shown below uses a For loop to calculate the factorial for each time input.
The model uses blocks within the While container that are executed in the current
time sample. The Break block allows an exit from the While, when the conditional
statement feeding it is true.

In the Body Of For Loop block (inline procedure), we have the following logic:
152

9

9
Introduction to Software Constructs with AutoCode
Note that in the looping example, the inputs and outputs are a mix of direct
inputs (increment and input) and local variables (index, factorial).

9.5.3 Ordering or Sequencing the Flow of Data and Calculations

The IfThenElse block example and in looping example illustrate logical flow from
software constructs and also with the sequencers. For transferring data and for
generating desired calculations, controlling program flow is easily established
and then modified with SystemBuild models and generated code.

9.5.4 Using Local or Global Variables

In the looping example shown in 9.5.2, p.152, the local variable is not persistent
across time samples. Once the current iteration of the software is complete, the
values of the local variables are lost. It is also necessary to initialize all local
variables upon entering a SuperBlock or procedure that uses them.

9.5.5 Other Coding Considerations

The procedure Body Of For Loop is an inline procedure. Therefore, the primitive
blocks nested within the inline procedure are merged into the subsystem of the
parent SuperBlock. As a result, use of inline procedures can result iin a different
block execution order and can help eliminate potential algebraic loops. An
153

MATRIXX 7.0
AutoCode User’s Guide
alternate choice is to use a standard procedure, and the corresponding code
would contain a call to the procedure, rather than the actual code.

An important automatic code generation feature is self-documentation. You can
use the Comment tab on the Properties dialog of any block to describe the
purpose of the block and how it fits into the overall system. Your comment is then
automatically incorporated into the generated code by selecting the enable flag at
code generation time. The code shown in example xxx illustrates typical
comments. A recommended practice is to have a one-to-one correspondence
between lines of code and comment lines.

9.6 Iterator Block

The While block provides a container that defines blocks that will continue to
execute until a condition or set of conditions is met. This type of block is like a
while loop in C and Ada.

9.7 Explicit Block Sequencing

The SystemBuild Analyzer and AutoCode automatically determine the sequence
in which blocks are executed. However, there may be algorithms you design that
require a set of blocks to be executed before another set of blocks. You can control
the sequencing of blocks by using the Sequencer block to divide the diagram into
frames; the frame on the left side executes before the frame on the right side. No
code is generated for a Sequencer block.

Explicit sequencing is critical for managing blocks such as Global and Local
Variable blocks, IfThenElse blocks (see IfThenElse Block), and possibly Standard
Procedure SuperBlocks.
154

9

9
Introduction to Software Constructs with AutoCode
9.8 Example Model

Figure 9-1 shows a model with software constructs, and Example 9-1 shows the
code generated for this model.

The following C code (Example 9-1) was generated from the model in Figure 9-1
with the Variable Block Read and Constant Propagation optimizations.

Example 9-1 Generated Software from Software Constructs Model (excerpt)

/**
| AutoCode/C (TM) Code Generator V7.x |
| WIND RIVER SYSTEMS INC., SUNNYVALE, CALIFORNIA |

rtf filename : S_W_Model.rtf
Filename : S_W_Model.c
Dac filename : c_sim.dac
Generated on : Wed Jun 2 19:10:16 2000
Dac file created on : Thu Mar 25 10:10:09 2000
Options : -l c
--

Figure 9-1 Sample Model with Software Constructs
155

MATRIXX 7.0
AutoCode User’s Guide
-- Number of External Input : 3
-- Number of External Output: 1
--
-- Scheduler Frequency: 10.0
--
-- SUBSYSTEM FREQUENCY TIME_SKEW OUTPUT_TIME TASK_TYPE
-- --------- --------- --------- ----------- ---------
-- 1 10.0 0.0 0.0 PERIODIC
*/

#include <stdio.h>
#include <math.h>
#include "sa_sys.h"
#include "sa_defn.h"
#include "sa_types.h"
#include "sa_math.h"
#include "sa_matrix.h"
#include "sa_user.h"
#include "sa_utils.h"
#include "sa_time.h"
#include "sa_fuzzy.h"

/*** System Data ***/

/******* Structure to drive disconnected input/output. *******/

struct _DcZero {
RT_FLOAT dzero;

};

static const struct _DcZero dczero = {0.0};

#define EPSILON 1.49011611938476562E-08
#define EPS (4.0 * EPSILON)
#define ABSTOL EPSILON
#define XREMAP 1

#define SCHEDULER_FREQ 10.0
#define NTASKS 1
#define NUMIN 3
#define NUMOUT 1
#define SCHEDULER_ID 0
#define PREEMPTABLE 2

enum TASK_STATE_TYPE { IDLE, RUNNING, BLOCKED, UNALLOCATED };

static RT_INTEGER ERROR_FLAG [NTASKS+1];
static RT_BOOLEAN SUBSYS_PREINIT [NTASKS+1];
static RT_BOOLEAN SUBSYS_INIT [NTASKS+1];
static enum TASK_STATE_TYPE TASK_STATE [NTASKS+1];

/******* System Ext I/O and Sample-Hold type declarations. *******/
struct _Sys_ExtOut {

RT_FLOAT dzero;
};
156

9

9
Introduction to Software Constructs with AutoCode
struct _Sys_ExtIn {
RT_FLOAT S_W_Model_1;
RT_FLOAT S_W_Model_2;
RT_FLOAT S_W_Model_3;

};

struct _Subsys_1_in {
RT_FLOAT S_W_Model_1;
RT_FLOAT S_W_Model_2;
RT_FLOAT S_W_Model_3;

};

/**** System Ext I/O and Subsystem I/O type definitions and ****
**** Pointers to SubSystem Outputs ReadOnly/Work areas. ****/

struct _Sys_ExtOut sys_extout;
struct _Sys_ExtIn sys_extin;
struct _Subsys_1_in subsys_1_in;

static RT_FLOAT ExtIn [NUMIN+1];
static RT_FLOAT ExtOut [NUMOUT+1];

/* Model variable definitions. */
VAR_INTEGER loop_cnt;
VAR_FLOAT result;
/* Model variable declarations. */
extern VAR_INTEGER loop_cnt;
extern VAR_FLOAT result;

/******** Tasks declarations ********/

/******* Subsystem 1 *******/
extern void subsys_1(struct _Subsys_1_in *U);

/******** Tasks code ********/

/******* Subsystem 1 *******/

void subsys_1(struct _Subsys_1_in *U
)
{

static RT_INTEGER iinfo[4];

/***** Local Block Outputs. *****/

RT_INTEGER S_W_Model_23_1;
RT_FLOAT S_W_Model_1_1;
RT_FLOAT S_W_Model_13_1;
RT_FLOAT S_W_Model_4_1;
RT_INTEGER S_W_Model_3_1;
RT_INTEGER S_W_Model_97_1;
RT_FLOAT S_W_Model_15_1;
RT_INTEGER S_W_Model_20_1;
RT_INTEGER S_W_Model_16_1;

/******* Initialization. *******/
157

MATRIXX 7.0
AutoCode User’s Guide
if (SUBSYS_PREINIT[1]) {
iinfo[0] = 0;
iinfo[1] = 1;
iinfo[2] = 1;
iinfo[3] = 1;
SUBSYS_PREINIT[1] = FALSE;
return;

}

/***** Output Update. *****/
/* ---------------------------- IfThenElse */
/* {S_W Model..2} */
if(U->S_W_Model_2 != 0.0) {

/* ---------------------------- ElementDivision */
/* {S_W Model..1} */
S_W_Model_1_1 = U->S_W_Model_1/U->S_W_Model_2;
/* ---------------------------- Write to Variable */
/* {S_W Model..14} */
result = S_W_Model_1_1;

}
else {

/* ---------------------------- Write to Variable */
/* {S_W Model..12} */
result = U->S_W_Model_2;

}
/* ---------------------------- Algebraic Expression */
/* {S_W Model..23} */
S_W_Model_23_1 = 1;

/* ---------------------------- Write to Variable */
/* {S_W Model..99} */
loop_cnt = S_W_Model_23_1;

/* ---------------------------- While */
/* {S_W Model..5} */
while (TRUE) {

/* ---------------------------- Read from Variable */
/* {S_W Model..13} */
S_W_Model_13_1 = result;
/* ---------------------------- Summer */
/* {S_W Model..4} */
S_W_Model_4_1 = S_W_Model_13_1 - U->S_W_Model_3;

/* ---------------------------- Write to Variable */
/* {S_W Model..21} */
result = S_W_Model_4_1;
/* ---------------------------- Read from Variable */
/* {S_W Model..3} */
S_W_Model_3_1 = loop_cnt;
/* ---------------------------- Algebraic Expression */
/* {S_W Model..97} */
S_W_Model_97_1 = 5;
158

9

9
Introduction to Software Constructs with AutoCode
/* ---------------------------- Relational Operator -- LT-EQ-GT */
test = S_W_Model_3_1 > S_W_Model_97_1;
/* ---------------------------- Break */
/* {S_W Model..98} */
if(test) {

break;
}
/* ---------------------------- Algebraic Expression */
/* {S_W Model..20} */
S_W_Model_20_1 = 1;
/* ---------------------------- Summer */
/* {S_W Model..16} */
S_W_Model_16_1 = S_W_Model_3_1 + S_W_Model_20_1;
/* ---------------------------- Write to Variable */
/* {S_W Model..10} */
loop_cnt = S_W_Model_16_1;
}

if(iinfo[1]) {
SUBSYS_INIT[1] = FALSE;
iinfo[1] = 0;

}
return;
EXEC_ERROR: ERROR_FLAG[1] = iinfo[0];

iinfo[0]=0;
}

159

MATRIXX 7.0
AutoCode User’s Guide
160

A

AutoCode Options
This appendix describes options that can be used when invoking AutoCode from
within Xmath or from the OS prompt. This appendix also describes how to use an
autostart.opt file. This appendix supplements Chapter 2, Using AutoCode.

A.1 Options When Invoking AutoCode

As described in Chapter 2, AutoCode can be invoked from the Catalog Browser,
the Xmath Commands window, or the operating system prompt. Table A-1 lists the
various AutoCode command options. The code generator is invoked by using the
autocode command (Xmath) or the autostar command (from OS prompt).

Table A-1 Options When Invoking AutoCode

Xmath Option OS Option Description

allgscope -allgscope Force all Output Scopes to be Global and all
procedure Input Scopes to be Local.

arraymin -Oarray n Minimum size of vectorized arrays. (default: 2)

backpmap -bmap map A string specifying the map associating
background procedures with processors. The
syntax parallels that specified for the subsysmap
option, except procedure numbers are used rather
than task numbers.
161

MATRIXX 7.0
AutoCode User’s Guide
config Replaced by options.

csi -csi n csi specifies the continuous task sample interval
(see 6.4.2 Xmath Command Options for Continuous
Code Generation, p.114 for details.).

NOTE: Use the csi option so generated code will
match sim results for continuous systems.

docit -doc Enables the DocumentIt tokens as described in the
Template Programming Language User’s Guide.

doublebuf -doublebuf Force double-buffering for single-rate systems.

epinfo -epi Boolean (default=0). Generate extended
procedure information data structures.
Procedures generated with this option should not
automatically be mixed with those generated
without it.

epsilon -eps Float (default is machine epsilon). Set the value of
epsilon used in the generated code. This option is
used to initialize model outputs. epsilon is set to
a very small value so that initial outputs will be
near zero; this prevents division by zero problems.
The AutoCode token epsilon_r is used to access
the epsilon value. If epsilon is left blank, a
default value is used.

errcheck -e Boolean (default=0). Enables error checking in the
generated code. Default is 0, error checking
disabled.

file -o file The default name is taken from the name of the
model file; the default extension is .c or .a,
depending on the language chosen.

Table A-1 Options When Invoking AutoCode (Continued)

Xmath Option OS Option Description
162

A

A
AutoCode Options
fmarker -f Boolean (default=0). When true (1), this option’s
value forces single-precision floating-point
markers for encoded numbers (C language option
only).

Example:
no -f option, generated code looks like
y=2.3 * u;
with -f option, generated code looks like
 y=2.3f * u.

foverflow -ovfp n Integer (default=2). Indicate state of overflow
protection for integer and fixed-point calculations.

0 = overflow protection disabled
1 = overflow protection forced
2 = overflow protection selected by block’s
option

glbvarblkopt -Ogvarblk Optimize read-from global varblocks.

See a on a There is
no keyword, but has
the command help
autocode for
Netscape help.,
p.169.

-h Obtains a help display.

ialg -i n ialg specifies the selected integrator as one of the
following:

1. First order Runge-Kutta -- Euler

2. Second order Runge-Kutta -- Modified Euler

3. Fourth order Runge-Kutta -- Simpson’s
Second Rule)

4. Kutta-Merson

5. User Integrator

See 6.4.2 Xmath Command Options for Continuous
Code Generation, p.114 for details.

indent -indent n This integer value specifies the amount of
indentation in output between levels. Default is 3.

Table A-1 Options When Invoking AutoCode (Continued)

Xmath Option OS Option Description
163

MATRIXX 7.0
AutoCode User’s Guide
initmerge -Oinitmerge Merge block INIT sections into one INIT section, if
possible.

interpmap -imap map A string specifying the map associating interrupt
procedures with processors. The syntax parallels
that of the backpmap option.

ipath -I pathname Adds a pathname to the list of directories in which
to search for template @include files. Can be used
multiple times on the command line (limit 10).

krstyle -kr Generate old-style (Kernighan and Ritchie) C
function prototypes.

language -l lang The language for generating the code: C or Ada.
The following are accepted: c, C; a, ada, Ada,
ADA.

linesz -linesz n This integer value specifies the maximum number
of output characters per line. The integer value
must be > 78. The default is 80.

loopmin -Oloop n Loop threshold for vectorized code (default: 2).

locvarblkopt -Olvarblk Optimize read-from local varblocks.

mapfile -pfile file A string defining the map file associating
subsystems and background, startup, and
interrupt procedures with processors. The
subsysmap, backpmap, startpmap, and interpmap
options override the specifications in this file, and
if none of these options is supplied and the file
doesn’t exist, it’s created using a default map. A
single-line comment is indicated using //
characters.

Table A-1 Options When Invoking AutoCode (Continued)

Xmath Option OS Option Description
164

A

A
AutoCode Options
minsf -minsf n Specifies minimum AutoCode scheduler
frequency. The real-time scheduler frequency is
set to the larger value of the frequency determined
by the block diagram application and the value
specified by -minsf. Normally, the default value
of 0.0 should be used, which allows the
application to set its own scheduler frequency.
Deviation from this default should be approached
with caution, as a consistent scheduler frequency
should normally be based on a least common
multiple of the inverse of the application timing
requirements (that is, frequencies).

namelen -nl n This integer value adjusts the maximum variable
length in the generated code. The integer value
must be > 20 (the default is 48).

nodiscon -odiscnout Optimize away disconnected outputs.

noerr -noerr Do not generate error detection code after a
procedure call is made.

nogscope -nogscope Force all Output Scopes to be Local.

noinfo -noinfo If possible, eliminate a procedure’s INFO
structure.

noicmap -noicmap Sets the constant variable XREMAP to False,
which prevents initial values of states from being
set.

nomap -nomap Boolean (default=0). Turn off the structure map
indicating subsystem and system external inputs
and outputs by setting the nobusmap_b token to
True.

norestart -Onorestart Optimize out the restart capability.

nosmooth -nosmooth Turn off floating-point constant number
smoothing.

nouy -nouy Pass procedure input and outputs as actual
arguments to the function.

Table A-1 Options When Invoking AutoCode (Continued)

Xmath Option OS Option Description
165

MATRIXX 7.0
AutoCode User’s Guide
numproc -np n Integer (default=1). The number of processors to
generate code for.

options -opt file Specifies the name of the options file. Options are
entered in the file using the same syntax as if they
were specified from Xmath or the OS. The
exception is that map specifications are not
enclosed between quotes. Options c an be on one
line, separate lines or a combination. Command
options override all of the options in the -opt file.
The rtf file name cannot be specified in the -opt
file. Single line comments are done by using //
characters. See A.2 Using the autostar.opt File, p.169
for more information about the options file.

parname -p Boolean (default=0). When true (1), specifies use
of parameter names specified by scripts in
language blocks instead of RP and IP arrays.

priomap -prio A string defining the priority of the subsystems. It
has a form similar to that of the skewmap option
(see above), except <skew value> is replaced by
an integer priority. Provided that AutoCode can
assign each subsystem a unique priority while
obeying the priomap, range and list operators in
the priomap are permitted for both subsystems
and priorities.

procs_only -procs Sets the template parameter procs_only_b as
true, and default template only generates
Procedure SuperBlocks and generates UCBs and
subsystem wrappers for each of these procedures.

-prompt Prompt for command options.

propconst -Opc Propagate constants across blocks.

reuse -Oreuse n Strategy for reusing subsystem local outputs.
0 : Do not reuse (default)
1 : Reuse by matching named outputs
2 : Reuse whenever possible.

roundfloat -round Force an implicit float-to-integer conversion to be
rounded rather than truncated.

Table A-1 Options When Invoking AutoCode (Continued)

Xmath Option OS Option Description
166

A

A
AutoCode Options
rtf See note bon
p.169.

The name of the generated real-time file (.rtf).
Default: modelname.rtf

rtos -rtos Boolean (default=0). Read the default Real-Time
Operating System configuration file, ac_rtos.cfg,
to obtain RTOS parameter information (or create
ac_rtos.cfg if it doesn't exist). This option is
incompatible with the rtosfile, subsysmap,
startpmap, backpmap, interpmap, and
priomap options. More information is given in
the AutoCode Reference.

rtosfile -rtosf file A string specifying the name of the file from
which to read the Real-Time Operating System
configuration information. This option is
incompatible with the RTOS, subsysmap,
startpmap, backpmap, interpmap, and
priomap options.

scheduler -sched n Choose a scheduler type:
0 : one-stage output posting (default)
1 : pre & post output posting

sd -sd n Integer. Specifies the number of significant digits
for encoded numbers. Default: long constants are
emitted to full machine width.

skewmap -skew n A string defining the skew of each subsystem. It
has the form:

<skewmap>:== <subsystem #> <skew value> {
<skewmap> ... }
<subsystem #>:== An integer naming the
subsystem
<skew value>:== A float defining the skew

Subsystem numbers and skew values must be
separated by a single space in the string.
Optionally, a range or list of subsystem numbers
can be used instead of <subsystem #> above.

smcallout -smco Boolean (default=0). Generate call-outs for access
to all elements in shared memory. Turn on the
shared memory function call out.

Table A-1 Options When Invoking AutoCode (Continued)

Xmath Option OS Option Description
167

MATRIXX 7.0
AutoCode User’s Guide
startpmap -smap map A string specifying the map associating startup
procedures with processors. The syntax parallels
that of the backpmap option.

subsysmap -pmap map A string specifying the map associating
subsystems with processors. The map contained
in the string has the form:

<map>:== <prsr #> <list> { <map> ... }
<prsr #>:== a processor number

(starting
at 1)
<list>:== <task #>, { <task #> ... }
<task #>:== a task number (starting at 0)

Processor numbers and lists must be separated by
a single space, while elements of the list must be
separated by a single comma.

tpldac -d file A direct access template file (see Chapter 5).
Default: $CASE/ACC/templates/c_sim.dac for
C $CASE/ACA/templates/ada_rt.dac for Ada

tplsrc -t file This is a template source file (see Chapter 5).
Default: $CASE/ACC/templates/c_sim.tpl for C
$CASE/ACA/templates/ada_rt.tpl for Ada

typecheck See note c Boolean (default=1). Enables data type checking.
See the SystemBuild online help for simulation for
details about data typing. For AutoCode the
default is 1; type checking is enabled. If
typecheck is set to false, all the variables in the
model are hardcoded with float data type.

ucbparams -ucbparams Use RP/IP temporaries as actuals to UCB call
instead of %var variables.

Table A-1 Options When Invoking AutoCode (Continued)

Xmath Option OS Option Description
168

A

A
AutoCode Options
A.2 Using the autostar.opt File

If you invoke AutoCode with the same options consistently, you can put these
options into an options file, saving a lot of error-prone, repetitive typing each time
you invoke AutoCode. AutoCode reads the options file at startup, and performs
the options as though you had entered them from the O/S prompt. Although you
can use an options file whether you invoke AutoCode from the Xmath Commands
window or the operating system prompt, the only options that you can specify in
the options file are operating system command options.

vars See note d on
p.169.

Boolean (default=1). The default is 1, meaning that
%vars are included in the model. Note that if the
code is generated from a model, the model is
processed using the vars keyword. However, if
the AutoCode function is invoked from the
operating system prompt using an existing .rtf,
the vars keyword is ignored. To turn off vars,
specify !vars. Same basic functionality as the vars
simulation keyword as described in the
SystemBuild User’s Guide.

vbcallout -vbco Boolean (default=0). Generate callouts around the
critical section of variable block accesses in the
generated code.

vectormode -Ov n Vectorization option:
0 : Scalar code generation (default)
1 : Vectorize based on labeling
2 : Maximal vectorization

a. There is no keyword, but has the command help autocode for Netscape help.
b. The name of the rtf file must always be specified when invoking from Xmath or the

OS.
c. The typecheck feature applies only to the creation of the rtf file, thus there is no

equivalent option from Xmath or the OS.
d. This Xmath option is used for creation of the rtf. When invoking from the OS, the rtf

must already exist; therefore, there is no OS option equivalent.

Table A-1 Options When Invoking AutoCode (Continued)

Xmath Option OS Option Description
169

MATRIXX 7.0
AutoCode User’s Guide
The default options file is autostar.opt. If you have an autostar.opt file in the
current working directory from which you invoke AutoCode, the options in that
file will be executed when you invoke AutoCode. If you specify an option from
the Xmath Commands window that is also in the options file, the command option
overrides the same option in the options file (see Example A-1 and the paragraphs
following).

For different applications, you might need to invoke AutoCode differently. For
this reason, you can have multiple options files. To invoke AutoCode with an
options file other than autostar.opt, specify the name of the options file when you
invoke AutoCode (see Example A-2 and the paragraphs following).

Options are entered into the options file using the same syntax as if they were
specified from the O/S prompt. The exception is that map specifications are not
enclosed between quotes. Options can be on one line, separate lines or a
combination. The rtf file name cannot be specified in the options file. Single line
comments are done by using // characters.

Example A-1 shows an options file.

Example A-1 Example autostar.opt Options File

// Sample options file //
-l c
-t c386_c860_mb2.tpl
-o myoutput

To use this file, invoke AutoCode as follows:

autostar model.rtf

This invokes AutoCode with the autostar.opt options file. Output is directed to the
file myoutput.

With the following command:

autostar -o myoutput3 model.rtf

The options file is again used, but the output file option (-o) is specified, so it
overrides the corresponding command in the options file. The output
documentation will be in file myoutput3, not in file myoutput as specified in the
options file.
170

A

A
AutoCode Options
Example A-2 shows an options file called myopt.opt.

Example A-2 Example Options File Called myopt.opt

// Sample options file //
-l c
-t c386_c860_mb2.tpl
-o myoutput2

To use this file, invoke AutoCode as follows:

autostar -opt myopt.opt model.rtf

This invokes AutoCode with the myopt.opt options file.

So, if you have both of the above option files (shown in Examples A-1 and A-2) in
your directory, invoking autostar without the -opt option puts the generated code
into file myoutput (the autostar.opt options file is used). Invoking autostar with
the -opt myopt.opt option as shown above puts the generated code into file
myoutput2.

A.3 Mapping Options

This section describes the options for controlling subsystem execution.

A.3.1 Setting Subsystem Priorities

If you do not specify any priorities, AutoCode allocates priorities to the
subsystems in the following manner. For C it allocates priority 0 to the scheduler,
and 1, 2, ..., total number of subsystems to subsystem 1, subsystem 2, ...,
respectively. For Ada by default, it allocates the number equal to the total number
of subsystems to the scheduler, and grows downward for subsystem 1, subsystem
2, ... , respectively.

‘For C or Ada, if you specify only the scheduler priority using the -prio option, the
subsystems will be given the priority 1 plus the scheduler priority. Or, if at least
one more subsystem is specified, depending on the sequence of priorities you
establish in specifying subsystems, the priority order will be ascending or
descending.
171

MATRIXX 7.0
AutoCode User’s Guide
Depending on the operating system you are using, you might need to change the
default mapping. In some operating systems, the smaller the number, the higher
the priority, but in others, the opposite sequence might prevail. You can change
the priorities by using the prio option. Syntax:

-prio subsystem# priority

When specified from the OS prompt, the syntax is

-prio "subsystem# priority"

Example:

-prio 0 30 1..3 29 3..n 28.

From the O/S prompt the above example would be:

-prio "0 30 1..3 29 4..n 28"

This example sets the priority 30 to scheduler subsystem 0 and 29 to subsystems
1,2 and 3 and priority 28 to subsystem 4 onwards. n is always 65535. Be sure to
place the scheduler priority at the beginning of the -prio option. The subsystem#
and priorities must be given in pairs and delimited by a space.

The priority of a subsystem, if not specified, depends on the previous and
successor subsystems. The system will not allocate a priority greater than the
successor subsystem. AutoCode will not allocate a negative subsystem ID. Every
subsystem priority must be less than the scheduler subsystem priority, whether
the sequence of priority numbers is ascending or descending. ‘..’ is used to specify
the range and ‘,’ is for listing. In -pfile the option can be:

-prio 0 30

 1,3 29

 4..7 28

As no subsystem can have more than one priority, the priorities cannot have the
range or list operators ‘..’, ‘,’.

Example:

-prio 0 30

 1 28..26

 2 25,24 is INVALID, but

Example:
172

A

A
AutoCode Options
-prio 0 30

1..n 9..2 is VALID and subsystems 1 to n will be assigned priorities between 9
and 2.

A.3.2 Setting Subsystem Skews

With the skew option, you can change skews specified in SystemBuild. One use of
this option is to reset the skews which have been applied to SuperBlocks in order
to split a large subsystem into two or more parts. A reason for splitting up such a
subsystem is that the parts can be run in parallel on multiple processors. Resetting
the skew ensures that they all start at the same time.

The syntax of the skew option is similar to that of the prio option.

-skew subsystem# skew

Examples:

Only the subsystems can use the range and list operators ‘..’, ‘,’.

Example:

-skew 1 .1

2..5 .002

6,8 .003

A.3.3 Setting Processor Subsystem Map

When generating code for multiple processors, a subsystem-to-processor map
must be specified. If no mapping is specified, AutoCode will map the subsystems
to different processors using the following rule:

Processor No. = ((subsys_id-1)% max. no. of processors) + 1

For a system with six subsystems and 2 processors, this would assign subsystems
1, 3, and 5 to processor 1 and subsystems 2, 4, and 6 to processor 2. Scheduler 0 is
always assigned to processor 1. When the default mapping rule is used, the
mapping is saved in file autocode.pmp in the working directory. You can edit

-skew 1 .1 2 .002 From Xmath

-skew "1 .1 2 .002" From the O/S prompt
173

MATRIXX 7.0
AutoCode User’s Guide
this file and specify this file name for future invocations of AutoCode using the -
pfile option.

If the -pfile option is specified but the file does not exist, AutoCode will create the
file and save the default mapping to it rather than to autocode.pmp. Note that
-pmap specifications are not saved to the file specified by the -pfile option.

To change the default processor mapping, use the -pmap option. The syntax is
similar to that of -prio and -skew options.

-pmap processor# subsystem#

Example:

-pmap 1 0 2 2,3,4 3 5,6

-pmap "1 0 2 2,3,4 3 5,6" (Command Line)

The above example allocates subsystem 0 to processor 1 and 2, 3, and 4 to 2 and 5,
6 to 3.

-pmap 1 0,1
2 2..6

The subsystems can have the range and list operators ‘..’, ‘,’.

A.3.4 Processor Map Specification from the OS Prompt

This section describes the command processor mapping for subsystem tasks,
background, startup and interrupt procedure SuperBlocks. The mapping is
specified by using the -pmap, -bmap, -smap, and -imap options.

The following is the format of these options:

<option> "<map>"

where:<option> :== [-pmap, -bmap, -smap, -imap]
<map> :== <prsr #> <list> { <map> ... }
<prsr #> :== <processor number starting at 1>
<list> :== <task/procedure numbers>

example:
autostar -l c -pmap "1 0,1,3 2 2,4" -np 2 test.rtf

You can use the -pfile option to generate a default set of mappings. The example
maps subsystems 0 (the scheduler), 1, and 3 to processor 1 and subsystems 2 and
4 to processor 2.
174

B

Software Development Kit
This appendix describes the AutoCode Procedure Software Development Kit
(ACP SDK). This SDK provides users of AutoCode generated code an Application
Programming Interface (API) to generated Standard and Startup Procedure
SuperBlock code. An API to the generated procedures allows a user to integrate
the generated code into a non-AutoCode generated system.

B.1 Scope

This appendix is for the MATRIXX AutoCode user who has built a modular
model using Procedure SuperBlocks and now needs to integrate the generated
code into a complete system. This appendix assumes that you are familiar with
the use of SystemBuild and AutoCode. If not, please see the MATRIXX Help and
the SystemBuild User’s Guide. This appendix describes the basis for the SDK and
provides some examples on the usage of the API.
175

MATRIXX 7.0
AutoCode User’s Guide
B.2 Supported Versions and Languages

This SDK has been developed and tested using MATRIXX 7.X. The kit contains
templates to generate C, C++, and Ada code.

The contents of the AutoCode SDK are summarized in Table B-1.

 Table B-1 AutoCode SDK Contents

Filename/Parameter Description

ada_sdk.tpl AutoCode TPL file for generating the Ada version of the
procedures and API functions. See B.7.2 Physical Design
(cpp_sdk.tpl), p.189.

c_sdk.tpl AutoCode TPL file for generating the C version of the
procedures and API functions. See B.4.5 Physical Design
(c_sdk.tpl), p.180.

ialg

(for integration
algorithm)

Specifies the integrator selection (corresponds to the IALG
Options tag on the Advanced dialog as described in
Chapter 2):

0 = user-defined integrator

1 = first order Runge-Kutta integrator

2 = second order Runge-Kutta integrator (default)

3 = fourth order Runge-Kutta integrator

4 = Kutta-Merson integrator

csi Specifies the continuous task sample interval

minsf Specifies the minimum AutoCode scheduler frequency in
seconds (0.0 is the default).

c_sdk_m.tpl Same as c_sdk.tpl, except each procedure is generated into a
separate .c and .h file. See B.4.6 Physical Design (c_sdk_m.tpl),
p.181.

c_core.tpl Common TPL between c_sdk.tpl and c_sdk_m.tpl.

c_sdkcore.tpl Common TPL code for C and C++ templates.

cpp_sdk.tpl Same as c_sdk.tpl, except, C++ classes are used for the API.

See B.7.2 Physical Design (cpp_sdk.tpl), p.189.
176

B

B
Software Development Kit
B.3 Overview

B.3.1 Procedures-Only SystemBuild Model

This SDK is based on the assumption that you want modular, reusable code to be
included into your system. This is accomplished by creating your model using
only Procedure SuperBlocks and a single top-level discrete SuperBlock as a
wrapper for all of the top-level procedures. For each of the top-level procedures,
the API interface is generated. Also, the API interface is generated for all Startup
Procedure SuperBlocks in the model.

B.3.2 Limitations

The SDK cannot properly generate code for procedures that use Xmath partitions
for %vars assigned to Procedure SuperBlock blocks.

B.3.3 Application Programming Interface

The procedures-only SystemBuild model is generated with AutoCode using the
SDK template appropriate for the programming language you plan to use. The

cpp_sdk_m.tpl Same as cpp_sdk.tpl, except each procedure is generated
into a separate .cpp and .h file. See B.7.3 Physical Design
(cpp_sdk_m.tpl), p.190.

cpp_core.tpl Common TPL between cpp_sdk.tpl and cpp_sdk_m.tpl.

wheellib.cat Example SystemBuild model file. See B.7.6 Example 4: Wheel
Program (CPP-SDK), p.193.

wheeldriver.c Example driver program (C). See Example B-6, p.186.

wheeldriver.cpp Example driver program (C++). See Example B-9, p.195.

Table B-1 AutoCode SDK Contents (Continued)

Filename/Parameter Description
177

MATRIXX 7.0
AutoCode User’s Guide
template generates code for the procedures in the model and generates an
interface to the top-level procedure(s) specified in the top-level discrete
SuperBlock of the model. The interface is composed of three elements: interface
structure, initialization function, and execute function.

Interface Structure

The interface structure is a data structure containing the private data needed by
the AutoCode generated procedure. You will need to create an instance of this
structure and pass it as an argument to the other API functions.

Initialization() Function

This initialization function initializes the interface structure. This function must
be called once for each instance of an interface structure and called before any
other API function.

Execute() Function

The execute() function is a wrapper function that interfaces your code to the
AutoCode generated procedure. The function arguments vary depending on the
procedure’s inputs and outputs. Call this function to execute the procedure.

B.3.4 Driver Program

The driver program is code that you implement to call the procedure API
functions. The driver is responsible for managing the input/output data of the
procedures.

B.4 C API

This section describes the generated C code of the C SDK template.
178

B

B
Software Development Kit
B.4.1 Logical Design

The logical design of the API consists of one structure and two functions for each
of the top-level procedures.

B.4.2 Interface Structure

The interface structure is a C struct containing the private data needed to support
the execution of the procedure. The structure is based on the following
“boilerplate” which describes the kinds of data found in this structure.

Example B-1 C Interface Structure

struct _ procedurename _ext {
procedurename _info procedurename _i;
procedurename _s procedurename _s_s;

};

where procedurename is the name of the top-level procedure and _ext is a suffix to
distinguish this structure from other structures of the procedure.

The interface structure contains the procedure’s INFO and STATE structures. For
more information about these structures, see the AutoCode Reference. Depending
on exactly what the procedure needs and/or optimizations you have used during
code generation, these structures may or may not be present.

Since this is a private data structure, there is no need to discuss its purpose or
content any further. The only requirement is that an instance of this structure be
created for each instance of the procedure you want to call and that it is properly
initialized.

B.4.3 Initialize() Function

This function initializes an instance of (instantiates) the procedure’s interface
structure. The function has the following signature. This function must be called
once for each instance of the interface structure and before any other API
function.

void procedurename _Initialize(
struct _ procedurename _ext *_idata

);
179

MATRIXX 7.0
AutoCode User’s Guide
B.4.4 Execute() Function

The execute() function is the calling interface from your code to the generated
procedure. The function has the “boilerplate” signature shown in Example B-2,
p.180.

Example B-2 Execute() Function

RT_INTEGER procedurename _Execute(
struct procedurename _u *U,
struct procedurename _y *Y,
RT_FLOAT TIME,
struct _ procedurename _ext *_idata

);

If you use the AutoCode –nouy option, which passes procedure input and
outputs as actual arguments to the function, the code looks similar to
Example B-2.

Example B-3 Execute() Function (with –nouy option)

RT_INTEGER procedurename _Execute(
RT_datatype u1 [, RT_ datatype un]
RT_datatype *y1 [, RT_ datatype *y n]
RT_FLOAT TIME,
struct _ procedurename _ext *_idata

);

In both of the above examples, struct procedurename_u is the procedure’s input
argument structure; struct procedurename_y is the procedure’s output argument
structure; TIME is the current simulated time measured from the start of the
simulation.

Depending on the exact number of inputs, outputs, and whether the current time
is needed, the interface varies for each procedure. You must declare an instance of
the input/output structures and pass all necessary arguments to this function to
properly execute the procedure. The function returns an error code, 0 meaning no
error; any other is an error that can be determined from predefined error codes in
the sa_defn.h SA-Library header file.

B.4.5 Physical Design (c_sdk.tpl)

The physical design of the API is the grouping of functions and data structures
into source files. The template generates two files: the header file and the source
file.
180

B

B
Software Development Kit
Header File

The generated header file contains all of the data structures used by all of the
procedures in the generated code. This includes the procedure’s input, output,
INFO and state data structures as well as the interface structure to the top-level
procedure(s) and the function prototypes for the API functions. The header file
name has the format toplevel.h, where toplevel is the name of the top-level discrete
SuperBlock of the model.

Source File

The generated source file contains code for all of the procedures including the API
functions for each of the top-level procedures. The source file name has the format
toplevel.c, where toplevel is the name of the top-level discrete SuperBlock of the
model.

B.4.6 Physical Design (c_sdk_m.tpl)

The physical design of the API is the grouping of functions and data structures
into source files. This template generates multiple files.

Header Files

A header file is created for each Standard and Startup Procedure that contains all of
the data structures used by that procedure. This includes the procedure’s input,
output, INFO, and state data structures. The name of each header file is based on
the name of the Procedure SuperBlock. The function prototypes for the API
functions for all top-level Standard Procedures are created in a separate header
file. That header file name has the format toplevel.h, where toplevel is the name of
the top-level discrete SuperBlock of the model.

Source File

A source file is created for each Standard and Startup Procedure that contains code
for the procedure. The name of each source file is based on the name of the
Procedure SuperBlock. The implementation of the API functions for all top-level
Standard Procedures are created in a separate source file. That source file name
181

MATRIXX 7.0
AutoCode User’s Guide
has the format toplevel.c, where toplevel is the name of the top-level discrete
SuperBlock of the model.

B.4.7 Compilation and Link Details

Given that we are using AutoCode generated code, the same compilation
configuration that is needed for the standalone simulation code will be needed
when using the SDK functions. There are only three details related to the
Standalone Library and machine platform. Of course, all of the individual source
files will need to be compiled and then all linked together.

Standalone Library Header Files

You will need all of the Standalone Library’s header files for proper compilation
of the generated code. You can either copy the Standalone Library header files
into your current working directory, or add the appropriate compiler option to
specify the library’s distribution directory in the compiler’s include path.

Platform Indicator

When compiling the generated source file, you must define the appropriate
platform symbol. For example, if you are using a Solaris platform, you need to
define the pre-processor symbol at the compiler’s command prompt, –-
DSOLARIS. See the AutoCode Reference for the symbol for your platform and other
syntax information.

Standalone Library Source Files

The Standalone Library contains support routines for the generated code.
Although mostly used for the standalone simulation, the generated procedure
may need some of the Standalone Library’s routines, especially if fixed-point is
used. If you receive errors when linking, this is most likely a result of not
compiling and linking the appropriate Standalone Library source file. Find the
needed Standalone Library source file, compile it and link it along with the other
object files for your system.
182

B

B
Software Development Kit
B.5 Sample Code (C-SDK) Example

Example B-4 illustrates the code generated in the header file and Example B-5 is a
sample driver program that calls the procedure. The top-level discrete SuperBlock
is named: interfaces and the top-level procedure is named: feather.

Example B-4 Header File (interfaces.h)

/**
| AutoCode/C (TM) Code Generator
| WIND RIVER SYSTEMS INC., SUNNYVALE, CALIFORNIA

rtf filename : interfaces.rtf
Filename : interfaces.h
Dac filename : c_sdk.dac
Generated on : Tue Feb 3 11:59:07 2000
Dac file created on : Tue Feb 3 11:59:06 2000

AutoCode Procedure Software Development Kit
Procedure Name Inputs Outputs INFO States
--
feather YES YES YES NO

*/
#ifndef _INTERFACES_H_
#define _INTERFACES_H_

#include "sa_sys.h"
#include "sa_types.h"

/******* Procedure: feather *******/

/***** Inputs type declaration. *****/
struct _feather_u {

RT_FLOAT input_val;
};

/***** Outputs type declaration. *****/
struct _feather_y {

RT_FLOAT gain_out;
};

/***** Info type declaration. *****/
struct _feather_info {

RT_INTEGER iinfo[5];};

/* **
************************ I N T E R F A C E S ************************

*/

/*
**
** Interfaces to: feather
183

MATRIXX 7.0
AutoCode User’s Guide
**
*/

struct _feather_ext {
struct _feather_info feather_i;

};

/* Function: feather_Initialize
**
** Abstract: Initialize procedure's private data
**
** Parameters: _idata (in) : ptr to an instance of
** procedure's interface data
**
*/
extern void feather_Initialize(struct _feather_ext *_idata);

/* Function: feather_Execute
**
** Abstract: Execute the procedure
**
** Parameters: Procedure's input and output variables
** Instance of interface structure
** Current time may be needed as well.
** Interface varies for each procedure.
**
** Returns: error status, 0 = no error,
** else see errors in sa_defn.h
**
*/
extern RT_INTEGER feather_Execute(

struct _feather_u *U,
struct _feather_y *Y,
struct _feather_ext *_idata);

#endif

Example B-5 is a sample driver program.

Example B-5 Driver Program (main.c)

#include <stdlib.h>

#include <stdio.h>
#include "interfaces.h"
int main() {

struct _feather_u in;
struct _feather_y out;
struct _feather_ext feather_inf;

int i;

srand(304);
feather_Initialize(&feather_inf);
for(i=0; i < 20; i++) {

in.input_val = (RT_FLOAT)(rand() / 8.5);
184

B

B
Software Development Kit
feather_Execute(&in, &out, &feather_inf);
printf(“input: %f\toutput: %f\n”, in.input_val, out.gain_out);

}
return 0;

}

B.6 Wheel Program (C-SDK) Example

The wheel program example uses a supplied example model and source code to
illustrate the steps needed to generate, compile, and execute the driver and SDK
generated code.

Step 1: Set up

We need to set up a current working directory. Create a new subdirectory, called
wheeltest. Change directory to wheeltest to make it the current working directory
and copy all of the SDK files into it.

Step 2: Generate API

We need to generate the API structures and functions. This is accomplished by
performing the following steps:

1. Launch Xmath and SystemBuild from within the current working directory.

2. Load the example model file: wheellib.cat.

3. Generate code using AutoCode. From the Xmath Commands window, enter:

autocode "wheel_library", { language="c", tplsrc="c_sdk.tpl", procs_only,
nouy }

AutoCode generates two source files: wheel_library.h andwheel_library.c.
185

MATRIXX 7.0
AutoCode User’s Guide
Step 3: Compile and Link API Functions and Driver Program

With the API functions generated, all we need to do is compile and link those API
functions with the supplied driver program (wheeldriver.c) that is our example
system.

Perform the following steps from an operating system command prompt:

1. Copy SA Library header files into your current working directory. If you need
other SA Library Files, especially the fixed-point implementations, copy those
files. If you do not copy the header files, you can add –I include path
directives to the compile line.

2. Compile and link the program as follows:

(UNIX - Solaris)

% acc –o wheel –DSOLARIS wheeldriver.c wheel_library.c

(Windows)

C:> CL -Op -O1 -W1 -DMSWIN32 -Fewheel_library.exe wheel_library.c
wheeldriver.c

3. If you get any link errors, specifically missing symbols, it is most likely that
you need to compile and link an SA Library File. Determine which SA library
file contains the function(s) (per the link error message), and then compile
and link with those files.

4. Run the program and some results will be output to the screen.

Example B-6 Driver Program (wheeldriver.c)

#include <stdlib.h>
#include <stdio.h>

#include "wheel_library.h"

typedef struct _wheeldata {
struct _whl_velocity_ext vel_data;
struct _whl_motion_ext motion_data;
struct _whl_recoil_ext recoil_data;

} WheelData;

NOTE: This example does not require any of the Standalone Library source files
to be compiled and linked. If it did, you could add those files to the above
command.
186

B

B
Software Development Kit
int main()
{

WheelData wheels[4];
int i;
RT_FLOAT in1, in2;
RT_FLOAT vel, motion, recoil, area;
RT_FLOAT curTime;

srand(281);

for(i=0; i<4; i++) {
whl_velocity_Initialize(&wheels[i].vel_data);
whl_motion_Initialize(&wheels[i].motion_data);
whl_recoil_Initialize(&wheels[i].recoil_data);

}

curTime = 0.0;

while (curTime <= 5.0) {
in1 = (RT_FLOAT)(rand() / 450.5);
in2 = (RT_FLOAT)(rand() / 1004.25);
printf("TIME = %f\n", curTime);
for(i=0; i<4; i++) {

in1 = in1 + (0.15*i);
in2 = in2 - (0.05*i);
whl_velocity_Execute(in1, in2, &vel, curTime, &wheels[i].vel_data);
whl_motion_Execute(vel, &motion, curTime, &wheels[i].motion_data);
whl_recoil_Execute(vel, &recoil, &area, curTime, &wheels[i].recoil_data);

printf("\tW%d\t%f\t%f\t%f\t%f\n",i,vel,motion,recoil,area);
}

curTime = curTime + 0.125;
}

return 0;
}

187

MATRIXX 7.0
AutoCode User’s Guide
B.7 C++ API

This section describes the generated C++ code of the C++ SDK template.

B.7.1 Logical Design

The logical design of the API consists of a class for each of the top-level
procedures. That class contains the private data and methods for properly
invoking the AutoCode procedure.

Class

A class is created that presents an interface to the AutoCode generated object. The
class name is of the form: procedurename_proxy.

Private Data Member

The private data of this class is a struct containing the private data needed to
support the execution of the procedure. The structure is based on the following
“boilerplate” which describes the kinds of data found in this structure.

struct _ procedurename _ext {
procedurename _info procedurename _i;
procedurename _s procedurename_s_s;

} m_procdata;

where procedurename is the name of the top-level procedure, and m_procdata is a
member instance of the structure.

The structure contains the procedure’s INFO and STATE structures. For more
information about these structures, see the AutoCode Reference. Depending on
exactly what the procedure needs and/or optimizations you have used during
code generation, these structures may or may not be present. Since this is a
private data structure, there is no need to discuss its purpose or content any
further.
188

B

B
Software Development Kit
Constructor Method

The purpose of this class constructor is to initialize an instance of the private data
member structure.

Execute Method

This method is the calling interface from your code to the generated procedure.
The function has the following “boilerplate” signature.

RT_INTEGER Execute(
struct procedurename _u *U,
struct procedurename _y *Y,
RT_FLOAT TIME

);

or if using the AutoCode –nouy option:

RT_INTEGER Execute(
RT_datatype u1 [, RT_ datatype un]
RT_datatype *y1 [, RT_ datatype *y n]
RT_FLOAT TIME

);

where struct procedurename_u is the procedure’s input argument structure; struct
procedurename_y is the procedure’s output argument structure; TIME is the current
simulated time measured from the start of the simulation.

Depending on the exact number of inputs and outputs, and whether the current
time is needed, the interface varies for each procedure. You must declare an
instance of the input/output structures and pass all necessary arguments to this
function to properly execute the procedure. The function returns error code 0,
which means no error. Any other code indicates an error that can be determined
from predefined error codes in the sa_defn.h SA-Library header file.

B.7.2 Physical Design (cpp_sdk.tpl)

The physical design of the API is the grouping of functions and data structures
into source files. There are two files generated by the template: a header file and a
source file.
189

MATRIXX 7.0
AutoCode User’s Guide
Header File

A header file is created that contains all of the data structures used by all of the
procedures in the generated code. This includes the procedure’s input, output,
INFO and state data structures as well API class declarations. The header file
name has the format toplevel. h, where toplevel is the name of the top-level discrete
SuperBlock of the model.

Source File

A source file is created that contains code for all of the procedures including the
API class methods for each of the top-level procedures. The source file name has
the format toplevel. cpp, where toplevel is the name of the top-level discrete
SuperBlock of the model.

B.7.3 Physical Design (cpp_sdk_m.tpl)

The physical design of the API is the grouping of functions and data structures
into source files. This template generates multiple files.

Header Files

A header file is created for each Standard and Startup Procedure that contains all of
the data structures used by that procedure. This includes the procedure’s input,
output, INFO and state data structures. The name of each header file is based on
the name of the Procedure SuperBlock. The proxy classes for the API functions for
all top-level Standard Procedures are created in a separate header file. That
header file name has the format toplevel.h, where toplevel is the name of the top-
level discrete SuperBlock of the model.

NOTE: The actual AutoCode procedures are generated as free functions. This
approach minimizes the amount of generated code. For example, if each of the
procedure’s descendent procedures where part of the class, then if more than one
top-level procedure called the same procedure, that procedure would have to be
implemented as member functions of both classes.
190

B

B
Software Development Kit
Source File

A source file is created for each Standard and Startup Procedure that contains code
for the procedure. The name of each source file is based on the name of the
Procedure SuperBlock. The implementation of the API proxy classes for all top-
level Standard Procedures are created in a separate source file. That source file
name has the format toplevel.cpp, where toplevel is the name of the top-level
discrete SuperBlock of the model.

B.7.4 Compilation and Link Details

The compilation and link details are the same as documented in the C API section.

B.7.5 Example 3: Sample Code (CPP-SDK)

Example B-7 illustrates the code generated in the header file and a sample driver
program that calls the procedure. The top-level discrete SuperBlock is named
interfaces and the top-level procedure is named feather.

Header File (interfaces.h)

Example B-7 Header File (interfaces.h)

/**
| AutoCode/C (TM) Code Generator
| WIND RIVER SYSTEMS INC., SUNNYVALE, CALIFORNIA

rtf filename : interfaces.rtf
Filename : interfaces.h
Dac filename : cpp_sdk.dac
Generated on : Tue Feb 3 11:59:07 1998
Dac file created on : Tue Feb 3 11:59:06 1998

AutoCode Procedure Software Development Kit

Procedure Name Inputs Outputs INFO States
--
feather YES YES YES NO

*/

#ifndef _INTERFACES_H_
#define _INTERFACES_H_
191

MATRIXX 7.0
AutoCode User’s Guide
#include "sa_sys.h"
#include "sa_types.h"

/******* Procedure: feather *******/

/***** Inputs type declaration. *****/
struct _feather_u {

RT_FLOAT input_val;
};

/***** Outputs type declaration. *****/
struct _feather_y {

RT_FLOAT gain_out;
};

/***** Info type declaration. *****/
struct _feather_info {

RT_INTEGER iinfo[5];
};

// ///

//
// CLASS: feather_proxy
//
class feather_proxy {
/////
///// methods
/////
public:

//////// Default Constructor
//
feather_proxy();

// Function: Execute
//
// Abstract: Execute the procedure
//
// Parameters: Procedure's input and output variables
// Current time may be needed as well.
// Interface varies for each procedure.
//
// Returns: error status, 0 = no error,
// else see errors in sa_defn.h
//
RT_INTEGER Execute(

struct _feather_u *U,
struct _feather_y *Y);

//////
////// private data
//////
private:

struct _feather_ext {
struct _feather_info feather_i;

} m_procdata;
192

B

B
Software Development Kit
};
#endif

Driver Program (main.cpp)

Example B-8 Driver Program (main.cpp)

#include <stdlib.h>
#include <stdio.h>
#include "interfaces.h"

int main() {
struct _feather_u in;
struct _feather_y out;
feather_proxy theFeather;
int i;

srand(304);
for(i=0; i < 20; i++) {

in.input_val = (RT_FLOAT)(rand() / 8.5);
theFeather.Execute(&in, &out);
printf("input: %f\toutput: %f\n", in.input_val, out.gain_out);

}
return 0;

}

B.7.6 Example 4: Wheel Program (CPP-SDK)

This example uses the supplied example model and source code to illustrate the
steps needed to generate, compile, and execute the driver and SDK generated
code.

Step 0: Set up

We need to set-up a current working directory. Create a new subdirectory, called
wheeltest. Change directory to wheeltest to make it the current working directory
and copy all of the SDK files into it.
193

MATRIXX 7.0
AutoCode User’s Guide
Step 1: Generate API

We need to generate the API structures and functions. This is accomplished by
performing the following steps:

1. Launch Xmath and SystemBuild from within the current working directory.

2. Load the example model file: wheellib.cat.

3. Generate code using AutoCode. From the Xmath Commands window, enter:

autocode "wheel_library", {
language="c",tplsrc="cpp_sdk.tpl",file="wheel_library.cpp",
procs_only,nouy }

AutoCode should have generated two source files: wheel_library.h and
wheel_library.cpp.

Step 2: Compile and Link API Functions and Driver Program

With the API functions generated, all we need to do is compile and link those API
functions with the supplied driver program (wheeldriver.cpp) that is our example
system. Perform the following steps from an operating system command prompt.

1. Copy SA Library header files into your current working directory. If you need
other SA Library Files, especially the fixed-point implementations, copy those
files. If you do not copy the header files, you can add –I include path
directives to the compile line.

2. Compile and link the program

(UNIX – Solaris)

% CC –o wheel –DSOLARIS wheeldriver.cpp wheel_library.cpp

(Windows)

C:> CL -Op -O1 -W1 -DMSWIN32 -Fewheel_library.exe wheel_library.cpp
wheeldriver.cpp

NOTE: This example does not require any of the Standalone Library source files
to be compiled and linked. If it did, you could add those files to the above
command.
194

B

B
Software Development Kit
3. If you get any link errors, specifically missing symbols, it is most likely that
you need to compile and link an SA Library File. Determine which SA library
file contains the function(s) (as per the link error message), and then compile
and link with those files.

4. Run the program and some results will be output to the screen.

Driver Program (wheeldriver.cpp)

Example B-9 Driver Program (wheeldriver.cpp)

#include <stdlib.h>
#include <stdio.h>
#include "wheel_library.h"

typedef struct _wheeldata {
whl_velocity_proxy vel;
whl_motion_proxy motion;
whl_recoil_proxy recoil_data;

} WheelData;

int main()
{

WheelData wheels[4];
int i;
RT_FLOAT in1, in2;
RT_FLOAT vel, motion, recoil, area;
RT_FLOAT curTime;

srand(281);

curTime = 0.0;

while (curTime <= 5.0) {
in1 = (RT_FLOAT)(rand() / 450.5);
in2 = (RT_FLOAT)(rand() / 1004.25);

printf("TIME = %f\n", curTime);
for(i=0; i<4; i++) {

WheelData &whl = wheels[i];
in1 = in1 + (0.15*i);
in2 = in2 - (0.05*i);

whl.vel.Execute(in1, in2, &vel, curTime);
whl.motion.Execute(vel, &motion, curTime);
whl.recoil.Execute(vel, &recoil, &area, curTime);

printf("\tW%d\t%f\t%f\t%f\t%f\n",i,vel,motion,recoil,area);
195

MATRIXX 7.0
AutoCode User’s Guide
}
curTime = curTime + 0.125;

}

return 0;
}

B.8 Ada API

This section describes the generated Ada code of the Ada SDK template.

B.8.1 Logical Design

The logical design of the API consists of a package specification and body for each
of the top-level procedures.

Package

A package is created that presents an API to the AutoCode generated procedure.
The package name is of the form: procedurename_ext_pkg.

Interface Record

The record datatype is defined to support the execution of the procedure. The
record based on the following “boilerplate” which describes the kinds of data
found in this record:

type procedurename _ext_t is record
procedurename _i : procedurename _info_t;
procedurename _s_s : procedurename _s_t;

end record;

type procedurename _ext_t_P is
access procedurename _ext_t;

function ptr_of is new UNCHECKED_CONVERSION
(SOURCE => SYSTEM.ADDRESS,

TARGET => procedurename _ext_t_P);
196

B

B
Software Development Kit
where procedurename is the name of the top-level procedure;

The structure contains the procedure’s INFO and STATE structures. For more
information about these structures, see the AutoCode Reference. Depending on
exactly what the procedure needs and/or optimizations you have used during
code generation, these structures may or may not be present. Since this is a
private data structure, there is no need to discuss its purpose or content any
further.

Initialize Procedure

The purpose of this procedure is to initialize an instance of the procedure’s
interface record. The procedure has the following signature. This procedure must
be called once for each instance of the interface record and before any other API
function.

procedure procedurename _Initialize(
idata : procedurename _ext_t_P

);

Execute() Function

This function is the calling interface from your code to the generated procedure.
The function has the following “boilerplate” signature.

function procedurename _Execute(
U : in procedurename _u_t_P;
Y : in procedurename _y_t_P;
TIME : in RT_FLOAT;
idata : in procedurename _ext_t_P

) return RT_INTEGER;

or if using the AutoCode –nouy option

function procedurename _Execute(
u1 : in RT_ datatype ; [u n : in RT_ datatype ;]
y1 : in RT_ datatype _P; [y n : in RT_ datatype _P;]
TIME : in RT_FLOAT;
idata : in procedurename _ext_t_P

) return RT_INTEGER;

where procedurename_u_t_P is the access pointer to the procedure’s input
argument record, and procedurename_y_t_P is the access pointer to the procedure’s
output argument record; TIME is the current simulated time measured from the
start of the simulation.
197

MATRIXX 7.0
AutoCode User’s Guide
Depending on the exact number of inputs, outputs and if the current time is
needed, the interface varies for each procedure. You must declare an instance of
the input/output records and pass all necessary argument to this function to
properly execute the procedure. The function returns an error code, 0 meaning no
error, any other is an error that can be determined from predefined error codes in
the sa_defn_.a SA-Library header file.

B.8.2 Physical Design (package feather_ext_pkg)

All package specifications and bodies for the AutoCode procedures and the API
packages are generated in one output file.

B.8.3 Compilation and Link Details

The compilation and link details are specific to each Ada compiler. The process
follows relatively the same steps used to compile the standalone simulation.

B.8.4 Example 5: Sample Code (Ada-SDK)

Example B-10 illustrates the API package specification and a sample driver
program (Example B-11) that calls the procedure. The top-level discrete
SuperBlock is named: interfaces and the top-level procedure is named: feather.

Package Specification

Example B-10 API Package Specification for feather_ext_pkg

with SA_TYPES; use SA_TYPES;
with SA_DEFN; use SA_DEFN;
with SYSTEM_DATA; use SYSTEM_DATA;
with SYSTEM;
with UNCHECKED_CONVERSION;
with feather_pkg; use feather_pkg;

package feather_ext_pkg is

type feather_ext_t is record
feather_i : feather_info_t;

end record;

type feather_ext_t_P is access feather_ext_t;
function ptr_of is new UNCHECKED_CONVERSION

(SOURCE => SYSTEM.ADDRESS, TARGET => feather_ext_t_P);
198

B

B
Software Development Kit
procedure feather_Initialize(idata : in feather_ext_t_P);
function feather_Execute(

U : in feather_u_t_P;
Y : in feather_y_t_P;
idata : in feather_ext_t_P) return RT_INTEGER;

end feather_ext_pkg;

Driver Program

Example B-11 Driver Program for API Package Specification

with SA_TYPES; use SA_TYPES;
with feather_pkg; use feather_pkg;
with feather_ext_pkg; use feather_ext_pkg;
with TEXT_IO; use TEXT_IO;
procedure main is

package FLT_IO is new Float_IO(RT_FLOAT);
in : feather_u_t;
out : feather_y_t;
f_ext : feather_ext_t;

begin
feather_Initialize(ptr_of(f_ext’ADDRESS));

for i in 1..20 loop
in.input_val := RT_FLOAT(i) / 8.5;
feather_Execute(ptr_of(in’ADDRESS), ptr_of(out’ADDRESS),

ptr_of(f_ext’ADDRESS));
FLT_IO.put(in.input_val);
FLT_IO.put(out.gain_out);

end loop;
end main;
199

MATRIXX 7.0
AutoCode User’s Guide
200

C

Sample AutoCode Output
This appendix shows the generated AutoCode output (in Example C-1) from the
IfThenElse example shown in Chapter 9.

Example C-1 Generated Software from IfThenElse Model

/**
| AutoCode/C (TM) Code Generator 70mx0912
| WIND RIVER INC., SUNNYVALE, CALIFORNIA

RTF filename : C:\WINNT\top.rtf
Filename : C:\WINNT\top.c
Generated on : Fri Sep 15 11:03:58 2000

Dac filename :
\\torque\mx70\NT\70mx0912\wini_70mx0912\case\ACC\templates\c_sim.dac
Dac file created on : Tue Sep 12 03:08:49 2000
Options : -l c

--
-- Number of External Input : 1
-- Number of External Output: 2
--
-- Scheduler Frequency: 10.0
--
-- SUBSYSTEM FREQUENCY TIME_SKEW OUTPUT_TIME TASK_TYPE
-- --------- --------- --------- ----------- ---------
-- 1 10.0 0.0 0.0 PERIODIC
--
-- Number of Procedures : 2
--
-- Procedure Name Inputs Outputs INFO States
-- --
-- p1 YES YES YES NO
201

MATRIXX 7.0
AutoCode User’s Guide
-- p2 YES YES YES NO
--
**/

#include <stdio.h>
#include <math.h>
#include "sa_sys.h"
#include "sa_defn.h"
#include "sa_types.h"
#include "sa_math.h"
#include "sa_user.h"
#include "sa_utils.h"
#include "sa_time.h"
#include "sa_fuzzy.h"

/*** System Data ***/

/******* Structure to drive disconnected input/output. *******/

#define EPSILON 1.4901161193847656E-008
#define EPS (4.0 * EPSILON)
#define ABSTOL EPSILON
#define XREMAP 1

#define SCHEDULER_FREQ 10.0
#define NTASKS 1
#define NUMIN 1
#define NUMOUT 2
#define SCHEDULER_ID 0
#define PREEMPTABLE 2

enum TASK_STATE_TYPE { IDLE, RUNNING, BLOCKED, UNALLOCATED };

static RT_INTEGER ERROR_FLAG [NTASKS+1];
static RT_BOOLEAN SUBSYS_PREINIT [NTASKS+1];
static RT_BOOLEAN SUBSYS_INIT [NTASKS+1];
static enum TASK_STATE_TYPE TASK_STATE [NTASKS+1];

/******* System Ext I/O type declarations. *******/
struct _Subsys_1_out {

RT_FLOAT apple_out;
RT_FLOAT orange_out;

};

struct _Sys_ExtIn {
RT_FLOAT top_1;

};

/******* System Ext I/O type definitions. *******/
struct _Subsys_1_out subsys_1_out;
struct _Sys_ExtIn sys_extin;

static RT_FLOAT ExtIn [NUMIN+1];
static RT_FLOAT ExtOut [NUMOUT+1];
202

C

C
Sample AutoCode Output
/* Model variable definitions. */
VAR_FLOAT abcd;
VAR_FLOAT efg;

/******** Procedures’ declarations ********/

#ifndef p1_STRUCTS
#define p1_STRUCTS

/******* Procedure: p1 *******/

/***** Inputs type declaration. *****/
struct _p1_u {

RT_FLOAT p1_1;
};

/***** Outputs type declaration. *****/
struct _p1_y {

RT_FLOAT apple;
};

/***** Info type declaration. *****/
struct _p1_info {

RT_INTEGER iinfo[5];
};

#endif

void p1 (
struct _p1_u *U
, struct _p1_y *Y
, struct _p1_info *I
);

/**/

#ifndef p2_STRUCTS
#define p2_STRUCTS

/******* Procedure: p2 *******/

/***** Inputs type declaration. *****/
struct _p2_u {

RT_FLOAT p2_1;
};

/***** Outputs type declaration. *****/

struct _p2_y {

RT_FLOAT orange;

};

/***** Info type declaration. *****/
struct _p2_info {
203

MATRIXX 7.0
AutoCode User’s Guide
RT_INTEGER iinfo[5];
};

#endif

void p2 (
struct _p2_u *U
, struct _p2_y *Y
, struct _p2_info *I
);

/**/

/******** Procedures’ definitions ********/

/******* Procedure: p1 *******/

void p1(struct _p1_u *U
,struct _p1_y *Y
,struct _p1_info *I

)
{

RT_INTEGER *iinfo = &I->iinfo[0];

/***** Local Block Outputs. *****/

RT_FLOAT abcd_1;
RT_FLOAT p1_1_1;
RT_FLOAT p1_2_1;

/***** Output Update. *****/
/* ---------------------------- Read from Variable */
/* {p1..3} */
abcd_1 = abcd;
/* ---------------------------- Gain Block */
/* {p1..1} */
p1_1_1 = 22.0*U->p1_1;
/* ---------------------------- Summer */
/* {p1..2} */
p1_2_1 = p1_1_1 + abcd_1;
/* ---------------------------- Saturation */
/* {p1..13} */
Y->apple = MIN(MAX(-50.0,p1_2_1),50.0);

iinfo[1] = 0;

EXEC_ERROR: return;
}

/******* Procedure: p2 *******/
void p2(struct _p2_u *U

,struct _p2_y *Y
,struct _p2_info *I

)

204

C

C
Sample AutoCode Output
{
RT_INTEGER *iinfo = &I->iinfo[0];

/***** Local Block Outputs. *****/

RT_FLOAT abcd_1;
RT_FLOAT p2_1_1;
RT_FLOAT p2_2_1;

/***** Output Update. *****/
/* ---------------------------- Read from Variable */
/* {p2..3} */
abcd_1 = efg;
/* ---------------------------- Gain Block */
/* {p2..1} */
p2_1_1 = 15.0*U->p2_1;
/* ---------------------------- Summer */
/* {p2..2} */
p2_2_1 = p2_1_1 + abcd_1;
/* ---------------------------- Saturation */
/* {p2..13} */
Y->orange = MIN(MAX(-50.0,p2_2_1),50.0);

iinfo[1] = 0;
EXEC_ERROR: return;
}

/******** Tasks declarations ********/

/******* Subsystem 1 *******/
void subsys_1(struct _Sys_ExtIn *U, struct _Subsys_1_out *Y);

/******** Tasks code ********/

/******* Subsystem 1 *******/

void subsys_1(struct _Sys_ExtIn *U

,struct _Subsys_1_out *Y
)
{

static RT_INTEGER iinfo[4];

/***** Local Block Outputs. *****/

RT_FLOAT abcd_1;
RT_FLOAT efg_1;
static struct _p1_u p1_99_u;
static struct _p1_y p1_99_y;
static struct _p1_info p1_99_i;
static struct _p2_u p2_23_u;
static struct _p2_y p2_23_y;
static struct _p2_info p2_23_i;
205

MATRIXX 7.0
AutoCode User’s Guide
static struct _p1_u p1_21_u;
static struct _p1_y p1_21_y;
static struct _p1_info p1_21_i;
static struct _p2_u p2_4_u;
static struct _p2_y p2_4_y;
static struct _p2_info p2_4_i;
static struct _p2_u p2_22_u;
static struct _p2_y p2_22_y;
static struct _p2_info p2_22_i;
static struct _p1_u p1_14_u;
static struct _p1_y p1_14_y;
static struct _p1_info p1_14_i;

/******* Initialization. *******/

if (SUBSYS_PREINIT[1]) {
iinfo[0] = 0;
iinfo[1] = 1;
iinfo[2] = 1;
iinfo[3] = 1;
p1_99_i.iinfo[0] = iinfo[0];
p1_99_i.iinfo[3] = iinfo[3];
p2_23_i.iinfo[0] = iinfo[0];
p2_23_i.iinfo[3] = iinfo[3];
p1_21_i.iinfo[0] = iinfo[0];
p1_21_i.iinfo[3] = iinfo[3];
p2_4_i.iinfo[0] = iinfo[0];
p2_4_i.iinfo[3] = iinfo[3];
p2_22_i.iinfo[0] = iinfo[0];
p2_22_i.iinfo[3] = iinfo[3];
p1_14_i.iinfo[0] = iinfo[0];
p1_14_i.iinfo[3] = iinfo[3];
SUBSYS_PREINIT[1] = FALSE;
return;

}

/***** Output Update. *****/
/* ---------------------------- Read from Variable */
/* {top..1} */
abcd_1 = abcd;
/* ---------------------------- Read from Variable */
/* {top..11} */
efg_1 = efg;

/* ---------------------------- IfThenElse */
/* {top..2} */
if(abcd_1 >= 10.0) {

/* ---------------------------- Procedure Super Block */
/* {p1.99} */
p1_99_u.p1_1 = U->top_1;
p1(&p1_99_u, &p1_99_y, &p1_99_i);
Y->apple_out = p1_99_y.apple;
iinfo[0] = p1_99_i.iinfo[0];
if(iinfo[0] != 0) {
206

C

C
Sample AutoCode Output
p1_99_i.iinfo[0] = 0; goto EXEC_ERROR;
}

}

else if(abcd_1 <= 1.0) {

/* ---------------------------- Procedure Super Block */
/* {p2.23} */
p2_23_u.p2_1 = U->top_1;
p2(&p2_23_u, &p2_23_y, &p2_23_i);
Y->orange_out = p2_23_y.orange;
iinfo[0] = p2_23_i.iinfo[0];
if(iinfo[0] != 0) {

p2_23_i.iinfo[0] = 0; goto EXEC_ERROR;
}

}
else if(abcd_1 > 10.0 && abcd_1 < 1.0 || (efg_1 == 1.0)) {

/* ---------------------------- Procedure Super Block */
/* {p1.21} */
p1_21_u.p1_1 = U->top_1;
p1(&p1_21_u, &p1_21_y, &p1_21_i);
Y->apple_out = p1_21_y.apple;
iinfo[0] = p1_21_i.iinfo[0];
if(iinfo[0] != 0) {

p1_21_i.iinfo[0] = 0; goto EXEC_ERROR;
}

/* ---------------------------- Procedure Super Block */
/* {p2.4} */
p2_4_u.p2_1 = U->top_1;
p2(&p2_4_u, &p2_4_y, &p2_4_i);
Y->orange_out = p2_4_y.orange;
iinfo[0] = p2_4_i.iinfo[0];
if(iinfo[0] != 0) {

p2_4_i.iinfo[0] = 0; goto EXEC_ERROR;
}

}
else {

/* ---------------------------- Procedure Super Block */
/* {p2.22} */
p2_22_u.p2_1 = U->top_1;
p2(&p2_22_u, &p2_22_y, &p2_22_i);
Y->orange_out = p2_22_y.orange;

iinfo[0] = p2_22_i.iinfo[0];
if(iinfo[0] != 0) {

p2_22_i.iinfo[0] = 0; goto EXEC_ERROR;
}

/* ---------------------------- Procedure Super Block */
/* {p1.14} */
p1_14_u.p1_1 = U->top_1;
207

MATRIXX 7.0
AutoCode User’s Guide
p1(&p1_14_u, &p1_14_y, &p1_14_i);
Y->apple_out = p1_14_y.apple;
iinfo[0] = p1_14_i.iinfo[0];
if(iinfo[0] != 0) {

p1_14_i.iinfo[0] = 0; goto EXEC_ERROR;
}

}

if(iinfo[1]) {
SUBSYS_INIT[1] = FALSE;
iinfo[1] = 0;

}
return;

EXEC_ERROR: ERROR_FLAG[1] = iinfo[0];
iinfo[0]=0;

}

/***
** Initialize global data such as:
** Scheduler data (subsytem code only)
** Variable Blocks
** %vars
** Subsystem I/O
***/
void Init_Application_Data ()
{

RT_INTEGER cnt;

/* Declare %var/varblk initialization data */

/* Variable blocks initialization. */
abcd = 0.0;
efg = 0.0;

/* Subsystem outputs initialization. */
subsys_1_out.apple_out = -EPSILON;
subsys_1_out.orange_out = -EPSILON;

for(cnt=0; cnt<NUMOUT; cnt++){
ExtOut[cnt] = -EPSILON;

}

SUBSYS_PREINIT[1] = SUBSYS_INIT[1];
subsys_1(&sys_extin, &subsys_1_out);

}

/*---------------*
-- SCHEDULER --
---------------/

/*** Scheduler Data ***/
208

C

C
Sample AutoCode Output
enum SUBSYSTEM_TYPE { CONTINUOUS, PERIODIC, ENABLED_PERIODIC,
TRIGGERED_ASYNC, TRIGGERED_ANT, TRIGGERED_ATR,
TRIGGERED_SAF, ECHART, NONE };

static const enum SUBSYSTEM_TYPE TASK_TYPE [NTASKS+1] =
{NONE, PERIODIC};

static const enum TASK_STATE_TYPE INITIAL_TASK_STATE [NTASKS+1] =
{UNALLOCATED, IDLE};

static const RT_INTEGER START_COUNT [NTASKS+1] =
{0, 0};

static const RT_INTEGER SCHEDULING_COUNT [NTASKS+1] =
{0, 0};

static const RT_INTEGER OUTPUT_COUNT [NTASKS+1] =
{0, 0};

static long int TIME_COUNT;
static RT_INTEGER TSK;
static RT_INTEGER SCHEDULER_STATUS;
static RT_INTEGER CURRENT_PRIORITY = NTASKS+1;
static RT_INTEGER LEVEL = 0;
static RT_INTEGER READY_COUNT;
static RT_INTEGER READY_QUEUE [NTASKS+1];
static RT_BOOLEAN DISPATCH [NTASKS+1];
static RT_INTEGER PRIORITY [NTASKS+1];
static volatile RT_INTEGER DISPATCH_COUNT;

struct TCB_TYPE
{

enum SUBSYSTEM_TYPE TASK_TYPE;
RT_BOOLEAN ENABLED;
RT_INTEGER START;
RT_INTEGER START_COUNT;
RT_INTEGER SCHEDULING_COUNT;
RT_INTEGER OUTPUT;
RT_INTEGER OUTPUT_COUNT;
RT_BOOLEAN DS_UPDATE;
RT_BOOLEAN EDGE_TRIGGER;

};
static struct TCB_TYPE TCB [NTASKS+1];

/* Work area side indices for subsystems. */
static RT_INTEGER SSWORKSIDE [NTASKS+1];
static RT_INTEGER SSREADSIDE;

unsigned short SCHEDULER_STATE;

#define Queue_Task(NTSK) \
READY_COUNT++; \
READY_QUEUE[READY_COUNT] = NTSK; \
DISPATCH[NTSK] = TRUE; \
TASK_STATE[NTSK] = RUNNING

#define Signal_An_Error(NTSK) \
if(ERROR_FLAG[NTSK] == OK) Error(NTSK, TIME_OVERFLOW); \
else Error(NTSK, ERROR_FLAG[NTSK]); \
209

MATRIXX 7.0
AutoCode User’s Guide
void Update_Outputs(RT_INTEGER NTSK)
{

SSREADSIDE = SSWORKSIDE[NTSK];
SSWORKSIDE[NTSK] = 1 - SSREADSIDE;
switch(NTSK) {

default:
break;

}
return;

}

void System_Extin_Copy() {
sys_extin.top_1 = ExtIn[0];

}

void System_Extout_Copy() {
ExtOut[0] = subsys_1_out.apple_out;
ExtOut[1] = subsys_1_out.orange_out;

}

void Update_DS_With_Externals() {

}

void Init_Scheduler()
{

RT_INTEGER NTSK;
for(NTSK=1; NTSK<=NTASKS; NTSK++) {

TCB[NTSK].TASK_TYPE = TASK_TYPE[NTSK];
TCB[NTSK].ENABLED = FALSE;
TCB[NTSK].START = START_COUNT[NTSK];
TCB[NTSK].START_COUNT = START_COUNT[NTSK];
TCB[NTSK].SCHEDULING_COUNT = SCHEDULING_COUNT[NTSK];
TCB[NTSK].OUTPUT = OUTPUT_COUNT[NTSK];
TCB[NTSK].OUTPUT_COUNT = OUTPUT_COUNT[NTSK];
TCB[NTSK].EDGE_TRIGGER = FALSE;
TASK_STATE[NTSK] = INITIAL_TASK_STATE[NTSK];
DISPATCH[NTSK] = FALSE;
ERROR_FLAG[NTSK] = 0;
SUBSYS_INIT[NTSK] = TRUE;
if(TASK_TYPE[NTSK]==TRIGGERED_ATR || TASK_TYPE[NTSK]==TRIGGERED_SAF ||

TASK_TYPE[NTSK]==TRIGGERED_ASYNC){
SSWORKSIDE[NTSK] = 0;
TCB[NTSK].DS_UPDATE = TRUE;

} else {
SSWORKSIDE[NTSK] = 1;
TCB[NTSK].DS_UPDATE = FALSE;

}
}
DISPATCH_COUNT = 0;
CURRENT_PRIORITY = NTASKS+1;
READY_COUNT = 0;
READY_QUEUE[0] = 0;
READY_QUEUE[1] = 0;
SSWORKSIDE[0] = 0;
210

C

C
Sample AutoCode Output
ERROR_FLAG[0] = 0;
DISPATCH[0] = FALSE;
SUBSYS_INIT[0] = FALSE;
SCHEDULER_STATUS = OK;
TIME_COUNT = -1;

}

void SCHEDULER()
{

register RT_INTEGER NTSK;
register RT_INTEGER I;

RT_INTEGER ITSK;

TIME_COUNT = TIME_COUNT + 1;

/*** System Input ***/

SCHEDULER_STATUS = External_Input();

System_Extin_Copy();

if(SCHEDULER_STATUS != OK){
return;

}

/*** Clear Ready Queue ***/

READY_COUNT = 0;
READY_QUEUE[1] = 0;

/*** Task Scheduling ***/

for(NTSK=NTASKS; NTSK>=1; NTSK--){

switch(TASK_STATE[NTSK]){
case IDLE :

switch(TCB[NTSK].TASK_TYPE){
case CONTINUOUS :
case PERIODIC :

if(TCB[NTSK].START == 0){
Queue_Task(NTSK);
Update_Outputs(NTSK);
TCB[NTSK].START = TCB[NTSK].SCHEDULING_COUNT;

} else {
TCB[NTSK].START = TCB[NTSK].START - 1;

}
break;

case ENABLED_PERIODIC :
if(!TCB[NTSK].ENABLED){

TASK_STATE[NTSK] = BLOCKED;
}else if(TCB[NTSK].START == 0){

Queue_Task(NTSK);
Update_Outputs(NTSK);
211

MATRIXX 7.0
AutoCode User’s Guide
TCB[NTSK].START = TCB[NTSK].SCHEDULING_COUNT;
}else{

TCB[NTSK].START = TCB[NTSK].START - 1;
}
break;

case TRIGGERED_ASYNC :
if(TCB[NTSK].OUTPUT == 0){

Update_Outputs(NTSK);
TASK_STATE[NTSK] = BLOCKED;
if(TCB[NTSK].START == 0){

Queue_Task(NTSK);
TCB[NTSK].START = 1;

}
}
break;

case TRIGGERED_ANT :
if(TCB[NTSK].START == 0){

Queue_Task(NTSK);
Update_Outputs(NTSK);
TCB[NTSK].START = 1;

}
break;

case TRIGGERED_ATR :
if(TCB[NTSK].OUTPUT == 0){

Update_Outputs(NTSK);
TASK_STATE[NTSK] = BLOCKED;
if(TCB[NTSK].START == 0){

Queue_Task(NTSK);
TCB[NTSK].OUTPUT = TCB[NTSK].OUTPUT_COUNT;
TCB[NTSK].START = 1;

}
} else {

TCB[NTSK].OUTPUT = TCB[NTSK].OUTPUT - 1;
}
break;

case TRIGGERED_SAF :
if(TCB[NTSK].OUTPUT == 0){

Update_Outputs(NTSK);
TASK_STATE[NTSK] = BLOCKED;
if(TCB[NTSK].START == 0){

queue_task(NTSK);
TCB[NTSK].START = 1;

}
} break;

}
break;

case RUNNING :
212

C

C
Sample AutoCode Output
switch(TCB[NTSK].TASK_TYPE){
case CONTINUOUS :
case PERIODIC :

if(TCB[NTSK].START > 0){
TCB[NTSK].START = TCB[NTSK].START - 1;

} else {
Signal_An_Error(NTSK);
return;

}
break;

case ENABLED_PERIODIC :
if(TCB[NTSK].START > 0){

TCB[NTSK].START = TCB[NTSK].START - 1;
} else {

Signal_An_Error(NTSK);
return;

}
break;

case TRIGGERED_ASYNC :
if(ERROR_FLAG[NTSK] != 0){

Signal_An_Error(NTSK);
return;

}
break;

case TRIGGERED_ANT :
if(TCB[NTSK].START == 0){

Signal_An_Error(NTSK);
return;

}
break;

case TRIGGERED_ATR :
if((TCB[NTSK].OUTPUT > 0) && (TCB[NTSK].START > 0)) {

TCB[NTSK].OUTPUT = TCB[NTSK].OUTPUT - 1;
} else {

Signal_An_Error(NTSK);
return;

}
break;

case TRIGGERED_SAF :
if(ERROR_FLAG[NTSK] != 0){

Signal_An_Error(NTSK);
return;

}
break;

}
break;

case BLOCKED :

switch(TCB[NTSK].TASK_TYPE){
case ENABLED_PERIODIC :
213

MATRIXX 7.0
AutoCode User’s Guide
if(TCB[NTSK].ENABLED){
Queue_Task(NTSK);
Update_Outputs(NTSK);
TCB[NTSK].START = TCB[NTSK].SCHEDULING_COUNT;

}
break;

case TRIGGERED_ASYNC :
if(TCB[NTSK].START == 0){

Queue_Task(NTSK);
TCB[NTSK].START = 1;

}
break;

case TRIGGERED_ATR :
if(TCB[NTSK].START == 0){

Queue_Task(NTSK);
TCB[NTSK].OUTPUT = TCB[NTSK].OUTPUT_COUNT;
TCB[NTSK].START = 1;

}
break;

case TRIGGERED_SAF :
if(TCB[NTSK].START == 0){

Queue_Task(NTSK);
TCB[NTSK].START = 1;

}
break;

}
break;

}
}

/*** System Output ***/

Update_DS_With_Externals();

System_Extout_Copy();

SCHEDULER_STATUS = External_Output ();

/*** Task Input Sample and Hold ***/

for(I=READY_COUNT; I>=1; I--){
TSK = READY_QUEUE[I];
switch (TSK){

case 1:

break;
default:

break;
}

}

/*** Signal End of Critical Section ***/
214

C

C
Sample AutoCode Output
if(READY_COUNT > 0){
if(READY_QUEUE[1] > DISPATCH_COUNT){

DISPATCH_COUNT = READY_QUEUE[1];
}
ITSK = READY_QUEUE[READY_COUNT];
SCHEDULER_STATE = PREEMPTABLE;

}else{
SCHEDULER_STATE = PREEMPTABLE;
return;

}

/*** Task Dispatching ***/

while(ITSK < CURRENT_PRIORITY && ITSK <= DISPATCH_COUNT){
Disable;
if(DISPATCH[ITSK]){

LEVEL++;
PRIORITY[LEVEL] = CURRENT_PRIORITY;
CURRENT_PRIORITY = ITSK;
DISPATCH[ITSK] = FALSE;
Enable;
switch (ITSK){

case 1 :
subsys_1(&sys_extin, &subsys_1_out);
break;

default : break;
}
Disable;
if(ERROR_FLAG[ITSK] == OK){

TASK_STATE[ITSK] = IDLE;
}
CURRENT_PRIORITY = PRIORITY[LEVEL];
LEVEL--;

}
Enable;
ITSK++;

}
if(ITSK > DISPATCH_COUNT){

DISPATCH_COUNT = 0;
}

}

/*----------*
-- MAIN --
----------/

main()
{

/*** Initialize Scheduler ***/

Init_Scheduler();

/* Initialize Application Data */

Init_Application_Data();
215

MATRIXX 7.0
AutoCode User’s Guide
/*** User Initialization ***/

Implementation_Initialize (&ExtIn[0], NUMIN, &ExtOut[0], NUMOUT,
SCHEDULER_FREQ);

/*** Start Scheduler ***/
SCHEDULER_STATUS = Background ();

/*** User Termination ***/

Implementation_Terminate();

exit(0);
}

NOTE: This example is quite long, but it illustrates one of the key advantages of
AutoCode. This entire C file is generated from one top-level block. The length of
this file helps to contrast the benefits of generating code from a model versus hand-
coding. The logic of the code will be a reflection of the logic of the model.
216

Index
Symbols
$env_var 19
%env_var% 19

A
ac_timing option 29
acmake 28, 58
Ada code 176
ada_intgr.tpl 113
ada_rt.tpl 113
ada_sdk.tpl 176
Advanced dialog 21
algebraic loops 18, 113
algorithmic procedures 12
allgscope option 161
application program 59
arraymin option 161
asynchronous subsystems 74, 78

background procedure 79, 82
interrupt procedure 79, 82
procedures 78
start-up procedure 79
triggered 81

AutoCode
automatic code generation 6, 8
blocks 143

BlockScript 140
global variable blocks 148
IfThenElse 150
local variable blocks 149
sequencing 154
Standard Procedure SuperBlocks 148
UCB 143
UserCode Blocks 143
variable blocks 148
While 154

command options 16, 17
configuration options 139, 140
customizing process 139
generated code applications 25
generated reusable procedures 12
invoking 5
model limitations 18
model restrictions 18
options

see individual option names. 161
options file 169
real-time application 9, 11
sequence for using 5
simulation 5
Tools Menu pulldown 18
Xmath command, autocode 18, 21

autocode command 161
examples 16
options 16

autostar command 15, 161
217

MATRIXX 7.0
AutoCode User’s Guide
example command for Ada 117
example command for C 117
examples 17
options 17

autostar.opt 169
aux clock 132

B
background function 11, 60
backpmap option 161
block sequencing 154
blocked state 64, 67, 71
BlockScript 11, 139, 140
bubble diagram 63
build

full 28, 58
incremental 28, 58

C
C code 176
C++ code 176
c_core.tpl 176
c_sdk.tp 176
c_sdk_m.tpl 176
c_sdkcore.tpl 176
categories of discrete systems 99
code generation 18

automatic 5
continuous systems 111

generated code sample - Ada 123
generated code sample - C 117
hints 127
how to generate 113
implicit frequency 115
limitations 113

customize 5
discrete systems 99

example Ada code 106
example C code 102
optimized code 101

procedural code 101
vectorized code 100

from OS
for continuous systems 116
for discrete systems 17

from within SystemBuild
for discrete systems 16

from Xmath
for continuous systems 114, 176
for discrete systems 16

hybrid systems
how to generate 113

code-comment tokens
limitations 146
using 145

compiling and linking 27
computational thread 60
config option 162
configuration file 169
configuration options 140
continuous code generation

integrators 112
limitations 113

continuous subsystem 53, 66, 67
continuous systems 66

code generation
from OS 116
from Xmath 114, 176

generated code sample - Ada 123
generated code sample - C 117
generating code 113
hints 127
implicit frequency 115
integrator 66, 111, 112

continuous-time model 5
cpp_core.tpl 177
cpp_sdk.tpl 176
cpp_sdk_m.tpl 177
CPU task utilization 59
critical section (scheduler) 60, 69
csi 176
csi - standalone 115
csi option 162
Ctrl-G 20
customizing AutoCode 139
218

IX

Index
D
data parameterization 142
discrete systems

categories 99
discrete time points 29
discrete-time

controller SuperBlocks 5
dispatch list 63, 67
dispatcher 10, 63, 64, 69, 83
division by zero 162
-DMSWIN32 194
doublebuf option 162
double-buffered outputs 70
–DSOLARIS 194

E
elapsed time counter 69
enable signal 60, 66, 71, 73
enabled periodic subsystem as a state machine 71
enabled periodic subsystems 61, 68, 71
enabled subsystems 67
epinfo option 162
epsilon option 162
epsilon_r 162
errcheck option 162
errors

customizing overflow handling 97
scheduler 95

subsystem overflow 95
examples

autocode command 16
autostar command 17
generated code (continuous) - Ada 123
generated code (continuous) - C 117

extended time [te,ye] 29

F
file option 162
files

ada_intgr.tpl 113
ada_rt.tpl 113
c_intgr.tpl 113
c_sim.tpl 113
sa_utils.<hll> 26
utilities

standalone 26
finite state machine 63, 69
first sample

See skew
fixed-point demo 32
fixed-point.dat 32
fmarker option 163
foverflow option 163
free-running periodic subsystem 60, 61, 66, 67, 70

as a state machine 70
full build 28, 58

G
gencode.bat 130
generated application 3

compiling 27, 32, 39, 40, 48
components 10
implementing 7
nature of 9

generated code
applications 25
comparing with sim results 29
compile and link 5
keywords 29
validate 6

generated code applications 25
generated program

passing control 63
generating code 18

customizing 21
generating real-time code 15
glbvarblkopt option 163
219

MATRIXX 7.0
AutoCode User’s Guide
H
hardware in-the-loop testing 7
help system 12
high-level language

Ada 3
C 3
code 5, 15

hints
continuous systems 127

hybrid system 66
generating code 113

I
I/O routines 11
ialg 176
ialg option 163
IALG options 23
ID (subsystems) 68
idle state 66, 67, 70
IfThenElse block 150
implicit frequency 115
increasing SIMNT memory size 134
incremental build 28, 58
indent option 163
initmerge option 164
input names 48
integrating generated code 31
integrator 66, 111, 112

first order Runge-Kutta 112
fourth order Runge-Kutta 112
Kutta-Merson 112
second order Runge-Kutta 112
user-supplied 112

interpmap option 164
interrupt handler 11, 60
interrupts 61
ipath option 164

K
krstyle option 164

L
label names 48
language option 164
latched outputs 70, 94
least common multiple rate 92
limitations 18
linesz option 164
linking 27, 32, 39, 40, 48
locvarblkopt option 164
loopmin option 164

M
Macro Procedure block 143
main.cpp 193
major cycle 71
makefile generation 8
makefile.cmdline 130
manager/scheduler 9, 63
mapfile option 164
mapping

subsystems to processors 173
command line 174
pmap option 174

MATRIXX
AutoCode 4
product family 3

minimum scheduler cycle 64
Minmax Display tool 34
minor cycle 64, 68, 71, 91
minsf 176
minsf option 165
model

testing 7
model simulation

running applications 29
time vectors 29
220

IX

Index
N
namelen option 165
negative-going edge (trigger) 74
nobusmap_b token 165
nodiscon option 165
noerr option 165
nogscope option 165
noinfo option 165
nomap option 165
norestart option 165
nosmooth option 165
–nouy 189
nouy option 165
numproc option 166

O
offset

(see skew)
online help 12
optimization 132
optimized code

types of optimization 101
options file 169
options option 166
organization

manual 1
OS command options

-csi 116
-minsf 116

output posting
ANT 74, 77
ASYNC 75
ATR 74, 77
SAF 77

overflow (scheduler) 95
overflow (subsystem) 95
overflow (timing) 83

P
parameterization 5, 142

variables 139
parname option 166
periodic task subsystems 59

repetition rate 59
periodicity 93
pmap option

example 174
positive-going edge (trigger) 74
pre-emption 83
prio option

example 172
priomap option 166
priorities, task 171
procs_only option 166
propconst option 166
pseudo-rate scheduler 91, 92, 94

R
rapid prototyping 2, 5, 7, 30
rate-monotonic

algorithm 59
scheduling 59

ready queue 66, 67, 83
real-time

application 11
application program 59
code 3
file 15, 17
generating code 5, 15, 32
simulation 31

re-entrant dispatcher 69
related publications 13
repetition rate 91
resettable integrator 144
restrictions 18
reusable procedures

AutoCode-generated 12
reuse option 166
roundfloat option 166
rtf option 15, 17, 167
221

MATRIXX 7.0
AutoCode User’s Guide
rtos option 167
rtosfile option 167
running 32, 39, 40, 48

state 70

S
sa_defn_.a 198
SAF (as-soon-as-finished) trigger 77
sample and hold 60, 66, 69, 83
sample rate 59, 60
sampling rate 64, 67, 91
scheduler 9, 11, 59, 63, 64

critical section 60, 69
dispatch list 67
dispatcher 69, 83

re-entrant 69
elapsed time counter 69
errors 95
example timing diagram 91
examples 84
major cycle 71
minimum cycle 64
minor cycle 64, 68, 71, 91
periodicity 93
pre-emption 83
pseudo-rate 91, 92, 94
rate-monotonic 59
ready queue 66, 67, 83
repetition rate 91
sampling rate 91
scheduler overflow 95
skew 93
subsystem overflow 95

causes 97
timing overflow 66
timing overflow (subsystem) 83
timing requirement 91

scheduler operation 65
scheduler option 167
sd option 167
sequencing block 154
setsbdefault command 29
sim...{initmode} command 70

simulation
options 29
real-time 31

skew 60, 93
example 93
setting

skew option 173
skew option

example 173
skewmap option 167
smcallout option 167
software constructs 147

example model 155
generated code 155, 201

standalone simulation 26, 28
set up environment variables 28

standalone utility file 5, 11, 26
sa_utils.<hll> 26

Standard Procedure SuperBlocks 148
startpmap option 168
state machine 63
state transition diagram (STD) 69, 70
subsysmap option 168
subsystem

processor subsystem map
command 174

subsystems 10, 60
ATR 68
constraints 83
continuous 66, 67
controlling execution 171
dispatch list 67
dispatching 83
dispatching and pre-emption example 84
dispatching operation with a pseudo-rate

scheduler 92
enabled periodic 61, 67, 68, 71

as state machine 71
execution queue 80
free-running periodic 60, 61, 66, 67, 70

as state machine 70
least common multiple 92
mapping options 171
minor cycle 68
overflow 95
222

IX

Index
overflow causes 97
periodicity 93
pre-emptible 61
processor subsystem map 173
pseudo-rate 92, 94
ready queue 66, 67, 83
running under simulation 71
sampling rate 67, 91
scheduler examples 84
scheduling 71
setting priorities

automatic 171
using the prio option 171

skew 93
example 93
setting 173

state 64
blocked 64, 67, 71
idle 66, 67, 70
running 70

task ID
NTASKS 68

timing diagram 73
timing overflow 66, 83
timing requirement 67, 91
triggered 61, 66

(ASAF or SAF) 75
as state machines 76, 77
output posting (SAF) 75

triggered ANT 68
triggered ASAF 68
triggered asynchronous 74

super_cruise.data 133
SuperBlock

top-level 30
system 16
SystemBuild 5

T
target processor 7, 29
target type

I80486 129
PPC604 129

SIMNT 129
target-specific utilities 26
task 60
task priorities 171
te,ye extended time 29
template 140

command parameters 21
programming language (see tpl) 140
tpl program 21, 139

template program 9, 11
template programming language

(see tpl)
testing a model 7
time vectors 29
timer interrupt handler 11
timing

overflow 66, 83
requirement 67, 91

timing diagram 73
timing properties 94
timing window 72
top-level SuperBlock 30
Tornado 2 2, 129
tpl 140

files
ada_intgr.tpl 113
ada_rt.tpl 113
c_intgr.tpl 113
c_sim.tpl 113

program 139
tpl programming language 21
tpldac option 168
tplsrc option 168
trigger 60
triggered as-soon-as-finished subsystems 68
triggered asynchronous 68
triggered asynchronous subsystems 74
triggered at-next-trigger subsystems 68
triggered at-timing-requirement subsystems 68
triggered subsystems 61, 66
triggered subsystems as state machines 76, 77
triggered task subsystems 59

timing requirement 59
typecheck option 168
223

MATRIXX 7.0
AutoCode User’s Guide
U
UCB 11, 143
ucbparams option 168
UserCode Block 143

(see UCB)
usrData.h 129
utilities

target-specific 26

V
variable blocks 148

global 148
local 149

vars option 169
vbcallout option 169
vectorized code

variations 100
vectormode option 169
VxWorks 129

template 2, 129
usage notes 136

W
wheeldriver.c 177, 186
wheeldriver.cpp 177, 194
wheellib.cat 177, 194

X
Xmath

generating code from 16
variables 142

Z
ZeroCrossing blocks 144
224

	MATRIXx AutoCode User's Guide
	Contents
	1 Introduction
	1.1� Manual Organization
	1.2� Rapid Prototyping Concept
	1.3� Automatic Code Generation Process
	1.4� Using AutoCode with BetterState
	1.5� Profile of the Generated Program
	1.6� AutoCode-Generated Reusable Procedures
	1.7� Using MATRIXX Help
	1.8� Related Publications

	2 Using AutoCode
	2.1� How to Generate Real-Time Code
	2.1.1� Generating Code from Within SystemBuild
	2.1.2� Generating Code from Xmath
	2.1.3� Generating Code from the Operating System
	2.1.4� Limitations/Restrictions

	2.2� Generating Non-Customized Code
	2.3� Generating Customized Code
	2.4� Using Templates
	2.5� Applications of AutoCode-Generated Code
	2.5.1� Standalone Simulation
	2.5.2� Simulation Options
	2.5.3� Rapid Prototyping
	2.5.4� Real-Time Simulation
	2.5.5� Implement Embedded Real-Time Control

	2.6� How to Integrate Generated Code into Your Target
	2.6.1� Loading the Fixed-Point Demo
	2.6.2� Determining System Scaling
	2.6.3� Modular Programming
	2.6.4� Comparing the Output
	2.6.5� Implementation
	2.6.6� Optimizations
	2.6.7� Integration and Test

	2.7� How to Write Production Quality Code (Graphically)
	2.7.1� Graphical Solutions
	2.7.2� Labels and Names
	2.7.3� Modular Programming Through Procedures

	3 Using AutoCode with BetterState
	3.1� Procedural and Event-Driven BetterState Charts
	3.2� Generating Code for a BetterStateChart Block
	3.2.1� Handling BetterState Charts That Call Procedures
	3.2.2� Handling BetterState Charts That Read or Write Variable Blocks

	3.3� Using BlockScript User Code

	4 Managing and Scheduling Applications
	4.1� Real-Time Application Scheduler
	4.1.1� Subsystems
	4.1.2� Flow of Control in the Generated Program

	4.2� Sequence of Scheduler Operations
	4.3� Properties of Scheduled Subsystems
	4.3.1� Free-Running Periodic Subsystems
	4.3.2� Enabled Periodic Subsystems
	4.3.3� Triggered Subsystems

	4.4� Properties of Asynchronous Subsystems
	4.4.1� Start-up Procedure
	4.4.2� Asynchronous Trigger Subsystems
	4.4.3� Interrupt Procedure
	4.4.4� Background Procedure

	4.5� Reentrancy and Preemption: The Dispatcher
	4.6� Scheduler Examples
	4.6.1� Dispatching and Pre-emption Example
	4.6.2� Pseudo-Rate Scheduler
	4.6.3� Operating with Skew

	4.7� Scheduler Errors
	4.7.1� Scheduler or Subsystem Overflow
	4.7.2� Examples Where Overflow is Irrelevant or Cannot Happen

	5 Code Generation for Discrete Systems
	5.1� Introduction
	5.2� How to Generate Code for Discrete Systems
	5.3� Introduction to Vectorized Code
	5.4� Introduction to Optimized Code
	5.5� Introduction to Procedural Code
	5.6� Sample Generated Code
	5.6.1� Sample C Code
	5.6.2� Sample Ada Code

	6 Code Generation for Continuous Systems
	6.1� Introduction
	6.2� Integrators
	6.3� Limitations
	6.4� How to Generate Code for Continuous or Hybrid Systems
	6.4.1� Generating Code for Continuous Systems from SystemBuild
	6.4.2� Xmath Command Options for Continuous Code Generation
	6.4.3� OS Command Options for Continuous Code Generation

	6.5� Sample Generated C Code
	6.6� Sample Generated Ada Code
	6.7� Hints

	7 Using VxWorks with AutoCode
	7.1� Template Features
	7.2� Generating Code
	7.3� Code Testing Method
	7.4� Increasing SIMNT Memory Size
	7.5� Usage Notes

	8 Customizing AutoCode and Generated Code
	8.1� Introduction
	8.2� AutoCode Configuration Options
	8.3� Templates
	8.4� BlockScript Block
	8.5� Data Parameterization
	8.6� UserCode Block
	8.7� Macro Procedure Block
	8.8� ZeroCrossing Blocks and Resettable Integrators
	8.9� User-Defined Code Comments
	8.9.1� Using a User-Defined Code Comment
	8.9.2� Limitations

	9 Introduction to Software Constructs with AutoCode
	9.1� Introduction
	9.2� Standard Procedure SuperBlocks
	9.3� Variable Blocks
	9.3.1� Global
	9.3.2� Local

	9.4� Graphical Software Constructs
	9.5� IfThenElse Block
	9.5.1� IfThenElse Block Example
	9.5.2� Looping
	9.5.3� Ordering or Sequencing the Flow of Data and Calculations
	9.5.4� Using Local or Global Variables
	9.5.5� Other Coding Considerations

	9.6� Iterator Block
	9.7� Explicit Block Sequencing
	9.8� Example Model

	A AutoCode Options
	A.1� Options When Invoking AutoCode
	A.2� Using the autostar.opt File
	A.3� Mapping Options
	A.3.1� Setting Subsystem Priorities
	A.3.2� Setting Subsystem Skews
	A.3.3� Setting Processor Subsystem Map
	A.3.4� Processor Map Specification from the OS Prompt

	B Software Development Kit
	B.1� Scope
	B.2� Supported Versions and Languages
	B.3� Overview
	B.3.1� Procedures-Only SystemBuild Model
	B.3.2� Limitations
	B.3.3� Application Programming Interface
	B.3.4� Driver Program

	B.4� C API
	B.4.1� Logical Design
	B.4.2� Interface Structure
	B.4.3� Initialize(�) Function
	B.4.4� Execute(�) Function
	B.4.5� Physical Design (c_sdk.tpl)
	B.4.6� Physical Design (c_sdk_m.tpl)
	B.4.7� Compilation and Link Details

	B.5� Sample Code (C-SDK) Example
	B.6� Wheel Program (C-SDK) Example
	B.7� C++ API
	B.7.1� Logical Design
	B.7.2� Physical Design (cpp_sdk.tpl)
	B.7.3� Physical Design (cpp_sdk_m.tpl)
	B.7.4� Compilation and Link Details
	B.7.5� Example 3: Sample Code (CPP-SDK)
	B.7.6� Example 4: Wheel Program (CPP-SDK)

	B.8� Ada API
	B.8.1� Logical Design
	B.8.2� Physical Design (package feather_ext_pkg)
	B.8.3� Compilation and Link Details
	B.8.4� Example 5: Sample Code (Ada-SDK)

	C Sample AutoCode Output
	Index

